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Abstract: In this paper, we introduce and investigate the concept of AI
K

-summability as an extension
of AI

∗

-summability which was recently (2021) introduced by O.H.H. Edely, where A = (ank)
∞

n,k=1
is a non-

negative regular matrix and I and K represent two non-trivial admissible ideals in N. We study some of its
fundamental properties as well as a few inclusion relationships with some other known summability methods. We

prove that AK-summability always implies AI
K

-summability whereas AI-summability not necessarily implies

AI
K

-summability. Finally, we give a condition namely AP (I,K) (which is a natural generalization of the

condition AP ) under which AI-summability implies AI
K

-summability.
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1. Introduction

In 2000, Kostrkyo and Salat [12] introduced the notion of ideal convergence. They studied
several fundamental properties of I and I∗-convergence and showed that their idea was the extended
version of so many known convergence methods. Based on I-convergence several generalizations
were made by researchers and several analytical and topological properties have been investigated
(see [1, 9, 11, 15–19, 21, 22] where many more references can be found) and this area becomes one
of the most focused areas of research.

In 2011, M. Macaj and M. Sleziak [13] generalized the idea of I∗-convergence to IK-convergence
by involving two ideals I and K. In the case of IK-convergence, the convergence along the large
set is taken with regard to another ideal K instead of considering ordinary convergence. So from
that point of view the concept of IK-convergence being an extension of I∗-convergence shows a
strong analogy for further investigation. Recent developments in the direction of IK-convergence
from topological aspects can be found from the works of Das et al. [4, 5], Banerjee and Paul [2, 3]
and many others.

If x = (xk) be a real-valued sequence and A = (ank)
∞
n,k=1 be an infinite matrix, then Ax is the

sequence having nth term An(x) =
∑∞

k=1 ankxk. A sequence x = (xk) is said to be A-summable
to L, if lim

n→∞
An(x) = L. A matrix A = (ank)

∞
n,k=1 is said to be regular if it maps a convergent

sequence into a convergent sequence keeping the same limit i.e., A ∈ (c, c)reg if A ∈ (c, c) and
lim
n→∞

An(x) = lim
k→∞

xk. Here c, (c, c), and (c, c)reg denote the collection of all real-valued convergent

sequences, collection of all matrices which maps an element of c to an element of c, and the collection
of all regular matrices which maps an element of c to an element of c, respectively. The necessary
and sufficient Silverman–Toeplitz conditions for an infinite matrix A = (ank)

∞
n,k=1 to be regular are

as follows:

(i) sup
n

∑∞
k=1 |ank| < ∞;
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(ii) For any k ∈ N, lim
n→∞

ank = 0;

(iii) lim
n→∞

∑∞
k=1 ank = 1.

In 2008, Edely and Mursaleen [7] generalized the notion of A-summability to statistical A-
summability by using the concept of natural density. Recently, Edely [6] further extended the
notion of statistical A-summability to AI -summability, where I represents an ideal in N. In this
paper we intend to introduce the notion of AIK

-summability which is a natural generalization of
AI∗

-summability. For more details regarding summability theory, one may refer to [8, 10, 14, 20].

Throughout the paper, we will use (yn) to denote the image (An(x)) of the sequence x = (xk)
under the transformation of the non-negative regular infinite matrix A.

2. Definitions and preliminaries

Definition 1. A collection I containing subsets of a nonempty set X is called an ideal in X
if and only if (i) ∅ ∈ I, (ii) P,Q ∈ I implies P ∪Q ∈ I (Additive), and (iii) P ∈ I, Q ⊂ P implies
Q ∈ I (Hereditary).

If for any x ∈ X {{x}} ⊂ I then it is said that I satisfies the admissibility property or simply is
called admissible. Also I is called non-trivial if X /∈ I and I 6= {∅}.

Some standard examples of ideal are given below:

(i) The set If consisting of all subsets of N having finite cardinality is an admissible ideal in N.

(ii) The set Id of all subsets of natural numbers having natural density 0 is an ideal in N which
is also admissible.

(iii) The set Ic = {A ⊆ N :
∑

a∈A a−1 < ∞} is an ideal in N which also has the so called
admissibility property.

(iv) Suppose N =
∞
⋃

p=1
Dp, where Dp ⊂ N for any p ∈ N and for i 6= j, Di ∩Dj = ∅. Then, the set

I of all subsets of N which intersects finitely many Dp’s forms an ideal in N.

More important examples can be found in [9] and [11].

Definition 2. A collection F containing subsets of a nonempty set X is called a filter in X if
and only if (i) ∅ /∈ F (ii) M,N ∈ F implies M ∩N ∈ F and (iii) M ∈ F , N ⊃ M implies N ∈ F .

If I is a proper non-trivial ideal in X, then the collection F(I) = {M ⊂ X : ∃P ∈ I such thatM =
X \ P} forms a filter in X. It is known as the filter associated with the ideal I.

Definition 3 [12]. Let I be an ideal in N which satisfies the admissibility property. A real-
valued sequence x = (xk) is called I-convergent to l if for every ε > 0 the set {k ∈ N : |xk − l| ≥ ε}
is contained in I. The number l is called the I-limit of the sequence x = (xk). Symbolically,
I − lim x = l.

Definition 4 [12]. Let I be an ideal in N which satisfies the admissibility property. A sequence
x = (xk) is called I∗-convergent to l, if there exists a set M = {m1 < m2 < ... < mk < ...} in the
associated filter F(I), for which lim

k
xmk

= l holds.
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Definition 5 [13]. Let I,K denote two ideals in N. A sequence x = (xk) is called IK-
convergent to l if the associated filter F(I) contains a set M such that the sequence y = (yk)
defined by

yk =

{

xk, k ∈ M,

l, k /∈ M

is K-convergent to l.

If we consider K = If then IK-convergence concept coincides with I∗-convergence [12].

Definition 6 [13]. Let K be an ideal in N. Then, P ⊂K Q denotes the property P \ Q ∈ K.
Also P ⊂K Q and Q ⊂K P together implies P ∼K Q. Thus P ∼K Q if and only if P△Q ∈ K. A
set P is said to be K-pseudointersection of a system {Pi : i ∈ N} if for every i ∈ N P ⊂K Pi holds.

Definition 7 [13]. Let I and K be two ideals on N. Then I is said to have the additive property
with respect to K or the condition AP (I,K) holds if every sequence (Fn)n∈N of sets from F(I) has
K-pseudointersection in F(I).

Definition 8 [6]. A real-valued sequence x = (xk) is said to be AI-summable to a real num-
ber L, if the transformed sequence (An(x)) is I-convergent to L. Symbolically, it is written as
AI − limxk = L.

Definition 9 [6]. A real-valued sequence x = (xk) is said to be AI∗

-summable to a real num-
ber L, if there exists a set M = {m1 < m2 < ... < mi < ...} ∈ F(I) such that

lim
i→∞

∑

k

amikxk = lim
i→∞

ymi
= L.

3. Main results

Throughout the section, for a sequence x = (xk) we will use y = (yn) to denote the transformed
sequence (An(x)) where An(x) =

∑∞
k=1 ankxk.

Definition 10. Let A = (ank)
∞
n,k=1 be a non-negative regular matrix and suppose I,K be two

admissible ideals in N. A real-valued sequence x = (xk) is said to be AIK

-summable to L ∈ R, if
there exists a set M ∈ F(I) such that the sequence z = (zk) defined by

zk =

{

yk, k ∈ M,

L, k /∈ M

is K-convergent to L, where the sequence y = (yn) is defined as

yn = An(x) =

∞
∑

k=1

ankxk.

In this case we write, AIK

− limxk = L.

Example 1. Consider the decomposition of N given by

N =
∞
⋃

i=1

Di, Di = {2i−1(2s− 1) : s = 1, 2, 3, ...}.

Let I denotes the ideal consisting of all subsets of N which intersects finitely many of Di’s. Consider
the sequence x = (xk) defined by xk = 1/i if k ∈ Di and the infinite matrix A = (ank)

∞
n,k=1 as
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ank =

{

1, k = n+ 2,

0, otherwise.

Then, the sequence is AIK

-summable to 0 for K = I.

Justification: Clearly,

yn =

∞
∑

k=1

ankxk =
1

i
, n+ 2 ∈ Di.

Let M = N \D1. Then, M ∈ F(I) and it is easy to verify that the sequence z = (zk) defined by

zk =

{

yk, k ∈ M,

0, k /∈ M

is I-convergent to 0. Hence, AII

− limxk = 0.

Theorem 1. Let AI∗

− lim xk = L then AIK

− limxk = L.

P r o o f. Let AI∗

− lim xk = L. Then, there exists a set

M = {m1 < m2 < ... < mk < ...} ∈ F(I)

such that lim
i

ymi
= L. This implies that the sequence z = (zk) defined as

zk =

{

yk, k ∈ M,

L, k /∈ M

is usual convergent to L. Now by Theorem 2.1 of [11], we can say that for any ideal K, the sequence

z = (zk) is K-convergent to L. Hence, AIK

− lim xk = L. �

Theorem 2. Let AK − limxk = L then AIK

− lim xk = L.

P r o o f. Since AK − lim x = L, so for every ε > 0,

{k ∈ N : |yk − L| ≥ ε} ∈ K. (3.1)

Choose M = N from F(I). Consider the sequence z = (zk) defined by zk = yk, k ∈ M . Then,
using (3.1), we get for every ε > 0,

{k ∈ N : |zk − L| ≥ ε} ∈ K

i.e. z = (zk) is K-convergent to L. Hence AIK

− limxk = L. �

Remark 1. Converse of the above theorem is not necessarily true.



On A
IK

-summability 17

Example 2. Consider the ideals

Ic = {B ⊆ N :
∑

b∈B

b−1 < ∞}, Id = {B ⊆ N : d(B) = 0}

and the infinite matrix A = (ank)
∞
n,k=1 defined by

ank =

{

1, k = n,

0, otherwise.

Let x = (xk) be the sequence defined as

xk =

{

1, k is prime,

0, k is not prime.

Then, there exists set M of all non prime numbers ∈ F(Id) such that the sequence z = (zk) defined
as

zk =

{

yk, k ∈ M,

0, k /∈ M

is Ic-converegnt to 0. Hence, AId
Ic

− limxk = 0. But we claim that AIc − limxk 6= 0. Because if
AIc − lim xk = 0, then for any particular ε with 0 < ε < 1, we have the set

{k ∈ N : |yk − 0| ≥ ε} = set of all prime numbers ∈ Ic,

it is a contradiction.

The next theorem gives the condition under which AIK

-summability implies AK-summability.

Theorem 3. Let I and K be two admissible ideals in N. If I ⊆ K then AIK

− limxk = L
implies AK − limxk = L.

P r o o f. Let I ⊆ K. Then, AIK

− lim xk = L gives the assurance of the existence of a set
M ∈ F(I) such that the sequence z = (zk) defined as

zk =

{

yk, k ∈ M,

L, k /∈ M

is K-convergent to L and subsequently, we have

∀ε > 0, {k ∈ M : |yk − L| ≥ ε} ∈ K. (3.2)

Now as the inclusion

{k ∈ N : |yk − L| ≥ ε} ⊆ {k ∈ M : |yk − L| ≥ ε} ∪ (N \M)

holds and by our assumption, N \M ∈ I ⊆ K, from (3.2) we have

{k ∈ N : |yk − L| ≥ ε} ∈ K.

Hence, AK − limxk = L. �
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Theorem 4. If every subsequence of x = (xk) is A
IK

-summable to L, then x is AIK

-summable
to L.

P r o o f. If possible let us assume the contrary. Then, for every M ∈ F(I), the sequence
z = (zk) defined as

zk =

{

yk, k ∈ M,

L, k /∈ M

is not K-convergent to L. In other words, for any M ∈ F(I), there exists an εM > 0 such that

B = M ∩ {k ∈ N : |yk − L| ≥ εM} /∈ K.

Since K is admissible, so B is infinite. Let B = {b1 < b2 < ... < bk < ...}. Construct a subsequence

w = (wk) defined as wk = ybk for k ∈ N. Then, AIK

− limwk 6= L, we get a contradiction to the
hypothesis. �

Theorem 5. Let x = (xk) be a sequence such that AIK

− limxk = L. Then, every subsequence

of x is AIK

-summable to L if and only if both I and K does not contain infinite sets.

P r o o f. There are two possible cases.

Case I. Let K contain an infinite set. Suppose C be an infinite set and C ∈ K. Then,
N \ C ∈ F(K) and N \ C is also infinite. Let ε > 0 be arbitrary. Choose L1 ∈ R such that
L1 6= L. Consider the infinite matrix A = (ank)

∞
n,k=1, defined as

ank =

{

1, k = n,

0, otherwise,

and the sequence x = (xk) such that

xk =

{

L1, k ∈ C,

L, k ∈ N \ C.

Then,
{k ∈ N : |yk − L| ≥ ε} ⊆ C ∈ K.

This means that x is AK-summable to L. Therefore by Theorem 2, x is AIK

-summable to L. But
clearly the subsequence (xk)k∈C of x is AIK

-summable to L1 and not to L.

Case II. Let K does not contain an infinite set. Then K = If and AIK

-summability concept
coincides with AI∗

-summability.

Subcase I: if I contains an infinite set. Let B be any infinite set such that B ∈ I. Then,
N \B ∈ F(I) and N \B is also infinite. Define a sequence x = (xk) as

xk =

{

ξ, k ∈ B,

L, k ∈ N \B,

where ξ(6= L) ∈ R. Clearly x is AI∗

-summable to L for the infinite matrix considered in Case I.
But clearly the subsequence (xk)k∈B of x is not AI∗

-summable to L.

Subcase II: if I does not contain an infinite set. In this subcase, we have I = K = If and

therefore AIK

-summability concept coincides with ordinary summability ([10]) so any subsequence
of x is ordinary summable to L. �
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Remark 2. If a sequence is AIK

-summable then it may not be AI-summable.

Example 3. Let us consider the ideal I which is defined in Example 1 and the ideal

Ic = {A ⊆ N :
∑

a∈A

a−1 < ∞}.

Let M = {k ∈ N : k = 2p for some non-negative integer p}. Then, for the regular matrix
A = (ank)

∞
n,k=1 defined as

ank =

{

1, k = n,

0, otherwise,

the sequence x = (xk) defined by

xk =

{

1, k ∈ M,

0, k /∈ M

is AIIc

-summable to 0 but x is not AI -summable to 0.

Theorem 6. Let I and K be two ideals in N. Let x = (xk) be any real-valued sequence. Then,

AIK

− limxk = L implies AI − limxk = L if and only if K ⊆ I.

P r o o f. Let K ⊆ I and suppose AIK

− limxk = L. Then, the result follows directly from the
following inclusion

{k ∈ N : |yk − L| ≥ ε} ⊆ {k ∈ M : |yk − L| ≥ ε} ∪ (N \M).

For the converse part, we assume the contrary. Then, there exists a set say C ∈ K \ I. Let L1 and
L2 be two real numbers such that L1 6= L2. Define a sequence x = (xk) as

xk =

{

L1, k ∈ C,

L2, k ∈ N \ C

and the regular matrix A = (ank)
∞
n,k=1 as

ank =

{

1, k = n,

0, otherwise.

Then, for any ε > 0 we have,

{k ∈ N : |yk − L2| ≥ ε} ⊆ C ∈ K

which means that x is AK-summable to L2. Therefore by Theorem 2, x is AIK

-summable to L2.
By hypothesis x is AI -summable to L2. Therefore for ε = |L1 − L2|,

{k ∈ N : |yk − L2| ≥ |L1 − L2|} = C ∈ I,

it is a contradiction. Hence we must have K ⊆ I. �

Remark 3. If a sequence is AI -summable then it may not be AIK

-summable. Consider the
ideal I and the sequence x = (xk) defined in Example 1. Then, proceeding as Example 1 of [6], we

can prove that AII
f − lim xk 6= 0 although AI − lim xk = 0.
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Theorem 7. Let I and K be two admissible ideals of N such that the condition AP (I,K) holds.

Then, for a sequence x = (xk), A
I-summability implies AIK

-summability to the same limit.

P r o o f. Let AI − lim xk = L. Choose a sequence of rationales (εi)i∈N. Then, for every i,

Mi = {k ∈ N : |yk − L| < εi} ∈ F(I).

Thus by Definition 7, there exists a set M ∈ F(I) such that for any i ∈ N, M \Mi ∈ K. Consider
the sequence z = (zk)k∈N defined by

zk =

{

yk, k ∈ M,

L, k /∈ M.

To complete the proof, it is sufficient to show that the sequence z = (zk) is K-convergent to L.
Now,

{k ∈ N : |zk − L| < εi} = {k ∈ M : |zk − L| < εi} ∪ {k ∈ N \M : |zk − L| < εi}

= (N \M) ∪ {k ∈ M : |zk − L| < εi}

= (N \M) ∪ (Mi ∩M)

= N \ (M \Mi).

Now as M \Mi ∈ K, so N \ (M \Mi) ∈ F(K) and consequently we have

{k ∈ N : |zk − L| < εi} ∈ F(K)

i.e. K− lim zk = L. Hence, AIK

− limxk = L. This completes the proof. �

Theorem 8. Let I,I1,I2,K,K1,K2 be admissible ideals in N satisfying I1 ⊆ I2 and K1 ⊆ K2.
Then,

(i) AIK
1 − limxk = L implies AIK

2 − lim xk = L;

(ii) AIK1 − lim xk = L implies AIK2 − limxk = L.

P r o o f. (i) Suppose AIK
1 − lim xk = L. Then, by Definition 10, there exists M ∈ F(I1) such

that the sequence z = (zk) defined as

zk =

{

yk, k ∈ M,

L, k /∈ M

is K-convergent to L. Now since M ∈ F(I1), we have N \ M ∈ I1 and therefore by hypothesis

N \M ∈ I2, which again implies M ∈ F(I2). Hence we must have that AIK
2 − limxk = L.

(ii) Suppose AIK1 − lim xk = L. Then, by Definition 10, there exists M ∈ F(I1) such that the
sequence z = (zk) defined as,

zk =

{

yk, k ∈ M,

l, k /∈ M

satisfies the following property ∀ε > 0,

{k ∈ N : |zk − l| ≥ ε} ∈ K1.

Now by hypothesis the inclusion K1 ⊆ K2 holds, so we must have for ∀ε > 0,

{k ∈ N : |zk − l| ≥ ε} ∈ K2.

Hence AIK2 − limxk = L. �
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4. Conclusion

Summability plays an important role in mathematics, particularly in mathematical analysis.
In this paper, we introduce and investigate a few properties of AIK

-summability. We generate
a few examples and counterexamples in order to study some inclusion relationships with some
known methods of summability. But the main focus was to link AI and AI∗

-summability with
AIK

-summability. We prove that the condition AP (I,K) plays a crucial role in this regard. In the
future, this idea can be utilized by the researchers to develop some other forms of summability.
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9. Gogola J., Mačaj M., Visnyai T. On I
(q)
c -convergence. Ann. Math. Inform., 2011. Vol. 38, P. 27–36.

10. Jarrah A.M., Malkowsky E. Ordinary, absolute and strong summability and matrix transformations.
Filomat, 2003. No. 17. P. 59–78. DOI: 10.2298/FIL0317059J
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21. Savaş E., Gürdal M. Ideal convergent function sequences in random 2-normed spaces. Filomat, 2016.
Vol. 30, No. 3. P. 557–567. DOI: 10.2298/FIL1603557S

22. Tripathy B. C., Hazarika B. Paranorm I-convergent sequence spaces.Math. Slovaca, 2009. Vol. 59, No. 4.
P. 485–494. DOI: 10.2478/s12175-009-0141-4

https://doi.org/10.2298/FIL1706507S
https://doi.org/10.2298/FIL1603557S
https://doi.org/10.2478/s12175-009-0141-4

	Introduction
	Definitions and preliminaries
	Main results
	Conclusion

