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Abstract: In this paper, we are introducing certain subfamilies of holomorphic functions and making an
attempt to obtain an upper bound (UB) to the second and third order Hankel determinants by applying certain
lemmas, Toeplitz determinants, for the normalized analytic functions belong to these classes, defined on the
open unit disc in the complex plane. For one of the inequality, we have obtained sharp bound.
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1. Introduction

Let A represent a family of mappings f of the type

f(z) = z +
∞
∑

t=2

atz
t

in the open unit disc

U = {z ∈ C : 1 > |z|},

and S is the subfamily of A, possessing univalent (schlicht) mappings. Pommerenke [17] charac-
terized the rth-Hankel determinant of order n, for f with r, n ∈ N, namely
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(a1 = 1). (1.1)

The Fekete–Szegö functional [7] is obtained for r = 2 and n = 1 in (1.1), denoted by H2,1(f).
Further, sharp bounds to the functional |H2,2(f)|, obtained for r = 2 and n = 2 in (1.1), are called
as Hankel determinant of order two, given by

H2,2(f) =
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= a2a4 − a23.

https://doi.org/10.15826/umj.2022.1.011
mailto:vamsheekrishna1972@gmail.com
mailto:shaliniraj1005@gmail.com


Estimation of an Upper Bound 129

In recent years, the estimation of an upper bound (UB) to |H2,2(f)| was studied by many authors.
The exact estimates of |H2,2(f)| for the functions namely, bounded turning, starlike and convex
functions, each one is a subfamily of S, symbolized as R, S∗ and K respectively and fulfilling the
conditions

Re f ′(z) > 0, Re

{

zf ′(z)

f(z)

}

> 0, Re

{

1 +
zf ′′(z)

f ′(z)

}

> 0

in the unit disc U , were proved by Janteng et al. [9, 10] and the derived bounds are 4/9, 1 and 1/8
respectively. Choosing r = 2 and n = p+ 1 in (1.1), we obtain Hankel determinant of second order
for the p-valent function (see [20]), given by

H2,(p+1)(f) =

∣
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ap+1 ap+2

ap+2 ap+3
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∣

= ap+1ap+3 − a2p+2.

The case r = 3 seems to be much tough than r = 2. Few papers were devoted for the study of third
order Hankel determinant denoted as H3,1(f), with r = 3 and n = 1 in (1.1), namely

H3,1(f) =
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∣
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∣
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∣

.

Calculating the determinant, we have

H3,1(f) = a1(a3a5 − a24) + a2(a3a4 − a2a5) + a3(a2a4 − a23). (1.2)

The concept of estimation of an upper bound for H3,1(f) was firstly introduced and studied by
Babalola [3], who tried to estimate this functional in the classes R, S∗ and K, his results are as
follows

(i) f ∈ S∗ ⇒ |H3,1(f)| ≤ 16;

(ii) f ∈ K ⇒ |H3,1(f)| ≤ 0.714;

(iii) f ∈ R ⇒ |H3,1(f)| ≤ 0.742.

As a result of the paper by Babalola [3], mach research associated with the Hankel determinant of
order 3 and 4, for specific subfamilies of holomorphic functions have been done (see [1–5, 11, 12,
15, 18, 19]). Motivated by the results obtained by the indicated authors, here we make an attempt
to derive an upper bound to |H2,3(f)| = a3a5 − a24, |H3,1(f)|, when f belongs to the following new
subfamilies of holomorphic functions.

Definition 1. A function f(z) ∈ A is said to be in the class Rb(α), where b 6= 0 is a real

number with α (0 ≤ α < 1) , if it satisfies the condition

Re
(

1 − 2

b
+

2

b
f ′(z)

)

> α, z ∈ U .

It is observed that for b = 2 and for the values b = 2, α = 0, we have R(α), the class consisting
of functions whose derivative has positive real part of order α (0 ≤ α < 1) and R respectively.

Definition 2. A function f(z) ∈ A is said to be in the class S∗

b (α), where b is a non-zero real

number with α (0 ≤ α < 1) , if it satisfies the condition

Re

(

1 − 2

b
+

2

b

(

zf ′(z)

f(z)

))

> α, z ∈ U .
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For the values b = 2 and b = 2, α = 0, S∗

b (α) reduces to S∗(α), class consisting of starlike
functions of order α (0 ≤ α < 1) and S∗ respectively.

Definition 3. A function f(z) ∈ A is said to be in the class Kb(α), where b 6= 0 is a real

number with α (0 ≤ α < 1) , if it satisfies the condition

Re

(

1 − 2

b
+

2

b

(

1 +
zf ′′(z)

f ′(z)

))

> α, z ∈ U .

In particular for b = 2 and for the values b = 2, α = 0, Kb(α) reduces to K(α), the class
consisting of convex functions of order α (0 ≤ α < 1) and K respectively.

In proving our results, the following sharp estimates are needed, which are in the form of Lem-
mas hold good for functions possessing positive real part. Define the collection P of all functions g,
each one called as Carathéodory function [6] of the form

g(z) = 1 +

∞
∑

t=1

ctz
t,

which is holomorphic in U and Re g(z) > 0 for z ∈ U .

Lemma 1 [8]. If g ∈ P, then the estimate |ci − µcjci−j | ≤ 2 holds for i, j ∈ N, with i > j and

µ ∈ [0, 1].

Lemma 2 [14]. If g ∈ P, then the estimate |ci − cjci−j | ≤ 2 holds for i, j ∈ N, with i > j.

Lemma 3 [16]. If g ∈ P, then |ct| ≤ 2, for t ∈ N, equality occurs for the function

h(z) =
1 + z

1 − z
, z ∈ U .

Lemma 4 [21]. If g ∈ P, then |c2c4 − c23| ≤ 4 − 1/2 · |c2|2 + 1/4 · |c2|3.

In order to procure our results, we adopt the procedure framed through Libera and Zlotkiewicz [13].

2. Main results

Theorem 1. If

f(z) = z +

∞
∑

n=2

anz
n ∈ Rb(α),

where b is any real number with 0 < b ≤ 1/(1 − α), for 0 ≤ α < 1 then

|H3,1(f)| ≤ 41b2(1 − α)2

240
.

P r o o f. For

f(z) = z +

∞
∑

n=2

anz
n ∈ Rb(α),

by virtue of Definition 1, we have

b(1 − α) + 2 {f ′(z) − 1}
b(1 − α)

= g(z) ⇔ b(1 − α) + 2
{

f ′(z) − 1
}

= b(1 − α)g(z). (2.1)
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Using the series representations for f ′(z) and g(z) in (2.1), after simplifying, we get

an =
tcn−1

2n
, where t = b(1 − α), n ≥ 2. (2.2)

Putting the values of ai, for i ∈ {2, 3, 4, 5} from (2.2), in H3,1(f), given in (1.2), we have

H3,1(f) = t2
[

c2c4
60

− tc32
216

− c23
64

− tc21c4
160

+
tc1c2c3

96

]

. (2.3)

On grouping the terms in the expression (2.3), we obtain

H3,1(f) = t2
[

tc4(c2 − c21)

160
− c3

64

(

c3 −
tc1c2

2

)

+
tc2(c4 − c22)

216

− c2
192

(

c4 −
tc1c3

2

)

+
(189 − 94t)c2c4

8640

]

.

(2.4)

Applying the triangle inequality in (2.4), we get

∣

∣

∣
H3,1(f)

∣

∣

∣
≤ t2

[

t|c4||(c2 − c21)|
160

+
|c3|
64

∣

∣

∣
c3 −

tc1c2
2

∣

∣

∣
+

t|c2||c4 − c22|
216

+
|c2|
192

∣

∣

∣
c4 −

tc1c3
2

∣

∣

∣
+

(189 − 94t)|c2||c4|
8640

]

.

(2.5)

Upon using the Lemmas 1–3 in the inequality (2.5), we obtain

|H3,1(f)| ≤ 41t2

240
=

41b2(1 − α)2

240
. (2.6)

�

Remark 1. Choosing b = 2 and α = 0 in the inequality (2.6), it coincides with the result
obtained by Zaprawa [22].

Theorem 2. If

f(z) = z +

∞
∑

n=2

anz
n ∈ Rb(α),

where b is any real number with 0 < b ≤ 1/(1 − α), for 0 ≤ α < 1 then |H2,3(f)| ≤ b2(1 − α)2/15.

P r o o f. Substituting the values of a3, a4, and a5 from (2.2) in H2,3(f), we have

H2,3(f) = a3a5 − a24 = t2
[

c2c4
60

− c23
64

]

= t2
[

c2c4
60

− c2c4
64

+
c2c4
64

− c23
64

]

= t2
[

c2c4 − c23
64

+
c2c4
960

]

, where t = b(1 − α).

(2.7)

Applying the triangle inequality in (2.7) and then using the Lemmas 3 and 4, after simplifying, we
get

|H2,3(f)| = |a3a5 − a24| ≤
b2(1 − α)2

15
. (2.8)

�
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Remark 2. Choosing b = 2 and α = 0 in the inequality (2.8), it coincides with the result
obtained by Zaprawa [21]. At this stage, the inequality in (2.8) becomes sharp for the function

g(z) =
1 + z2

1 − z2
.

Theorem 3. If

f(z) = z +

∞
∑

n=2

anz
n ∈ S∗

b (α),

where b is any real number with 0 < b ≤ 1/(1 − α), for 0 ≤ α < 1 then

|H3,1(f)| ≤
[

b(1 − α)

12

]2

[34 + b(1 − α)].

P r o o f. For

f(z) = z +

∞
∑

n=2

anz
n ∈ S∗

b (α),

from the Definition 2, we have

{b(1 − α) − 2} f(z) + 2zf ′(z)

b(1 − α)f(z)
= g(z) ⇔ {b(1 − α) − 2} f(z) + 2zf ′(z) = b(1 − α)f(z)g(z) (2.9)

Replacing f(z), f ′(z) and g(z) with their equivalent series expressions in (2.9) and applying the
same procedure as we carried in Theorem 1, we obtain

a2 =
tc1
2
, a3 =

t

8

(

2c2 + tc21
)

, a4 =
t

48

(

8c3 + 6tc1c2 + t2c31
)

,

a5 =
t

384

(

48c4 + 32tc1c3 + 12tc22 + 12t2c21c2 + t3c41
)

, where t = b(1 − α).
(2.10)

Substituting the values of a2, a3, a4, and a5 from (2.10) in the functional given in (1.2), we get

H3,1(f) =
( t

94

)2[

− t4c61 + 6t3c41c2 + 32t2c31c3 − 36t2c21c
2
2 − 144tc21c4

+192tc1c2c3 − 72tc32 + 288c2c4 − 256c23

]

.
(2.11)

On grouping the terms in (2.11), we have

H3,1(f) =
( t

94

)2
[

160
(

c2 −
tc21
2

)(

c4 −
tc22
2

)

+ 8t
(

c2 −
tc21
2

)3
+

128
(

c2 −
tc21
2

)(

c4 −
tc1c3

2

)

− 256
(

c3 −
8tc1c2

16

)2
]

.

(2.12)

On applying the triangle inequality in (2.12), we obtain

∣

∣H3,1(f)
∣

∣ ≤
( t

94

)2
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∣

∣

∣
c2 −

tc21
2

∣

∣

∣

∣

∣

∣
c4 −

tc22
2

∣

∣

∣
+ 8t

∣

∣

∣
c2 −

tc21
2

∣

∣

∣

3
+

128
∣

∣

∣
c2 −

tc21
2

∣

∣

∣

∣

∣

∣
c4 −

tc1c3
2

∣

∣

∣
+ 256

∣

∣

∣
c3 −

8tc1c2
16

∣

∣

∣

2
]

.
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Further, the above inequality simplifies to

|H3,1(f)| ≤
(

t

12

)2

[34 + t] =

[

b(1 − α)

12

]2

[34 + b(1 − α)]. (2.13)

�

Remark 3. Choosing b = 2 and α = 0 in the inequality (2.13), we see that it coincides with
that of Zaprawa [22].

Theorem 4. If

f(z) = z +
∞
∑

n=2

anz
n ∈ Kb(α),

where b is any real number with 0 < b ≤ 1/(1 − α), 0 ≤ α < 1 then

|H3,1(f)| ≤
[

b(1 − α)

12
√

15

]2

[33 + 8b(1 − α)].

P r o o f. For

f(z) = z +

∞
∑

n=2

anz
n ∈ Kb(α),

from Definition 3, we have

{b(1 − α) − 2} f(z) + 2zf ′(z)

b(1 − α)f(z)
= g(z) ⇔ {b(1 − α) − 2} f(z) + 2zf ′(z) = b(1 − α)f(z)g(z).

Applying the same procedure as we did in Theorem 1, we obtain

a2 =
tc1
4
, a3 =

t

24

(

2c2 + tc21
)

, a4 =
t

192

(

8c3 + 6tc1c2 + t2c31
)

,

a5 =
t

1920

(

48c4 + 32tc1c3 + 12tc22 + 12t2c21c2 + t3c41
)

, where t = b(1 − α).

Further, we have

H3,1(f) =
t2

552960

[

− t4c61 + 12t3c41c2 + 48t2c31c3 − 84t2c21c
2
2 − 288tc21c4

+288tc1c2c3 − 32tc32 + 1152c2c4 − 960c23

]

.

On grouping the suitable terms in the above expression, we have

H3,1(f) =
t2

552960

[

64t
(

c2 −
tc21
4

)3
+ 384c4

(

c2 −
tc21
2

)

+ 576c2

(

c4 −
tc22
2

)

+192
(

c2 −
tc21
2

)(

c4 −
tc1c3

2

)

− 960c3

(

c3 −
2tc1c2

5

)

+ 192tc22

(

c2 −
3tc21
16

)

]

.

(2.14)

Applying the triangle inequality and then the Lemmas 1–3 in (2.14), we get

|H3,1(f)| ≤
[

t

12
√

15

]2

[33 + 8t] =

[

b(1 − α)

12
√

15

]2

[33 + 8b(1 − α)]. (2.15)

Remark 4. Choosing b = 2 and α = 0 in the inequality (2.15), we see that it coincides with
the result obtained by Zaprawa [22].
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3. Conclusion

The upper bounds to the fourth order Hankel determinants for all the above defined subclasses
of analytic functions were derived.

Acknowledgements

The authors are highly grateful to the esteemed Referee(s) for a comprehensive reading of the
manuscript and making valuable suggestions, leading to a better paper presentation.

REFERENCES

1. Arif M., Rani L., Raza M., Zaprawa P. Fourth Hankel determinant for the family of func-
tions with bounded turning. Bull. Korean Math. Soc., 2018. Vol. 55, No. 6. P. 1703–1711.
DOI: 10.4134/BKMS.b170994

2. Kowalczyk B., Lecko A., Sim Y. J. The sharp bound for the Hankel determinant of the third kind for con-
vex functions. Bull. Aust. Math. Soc., 2018. Vol. 97, No. 3. P. 435–445. DOI: 10.1017/S0004972717001125

3. Babalola K. O. On H3(1) Hankel Determinant for Some Classes of Univalent Functions. 2009. 7 p.
arXiv:0910.3779v13 [math.CV]

4. Bansal D., Maharana S., Prajapat J. K. Third order Hankel determinant for certain univalent functions.
J. Korean Math. Soc., 2015. Vol. 52, No. 6. P. 1139–1148. DOI: 10.4134/JKMS.2015.52.6.1139

5. Cho N. E., Kowalczyk B., Kwon O. S. et al. The bounds of some determinants for starlike
functions of order alpha. Bull. Malays. Math. Sci. Soc., 2018. Vol. 41, No. 1. P. 523–535.
DOI: 10.1007/s40840-017-0476-x

6. Duren P. L. Univalent Functions. Grundlehren Math. Wiss., vol. 259. New York: Springer, 1983. 384 p.
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