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Abstract: We consider a set membership estimation problem for linear non-stationary systems for which
initial states belong to a compact set and uncertain disturbances in an observation equation are integrally
restricted. We prove that the exact information set of the system can be approximated by a set of external
ellipsoids in the absence of disturbances in the dynamic equation. There are three examples of linear systems.
Two examples illustrate the main theorem of the paper, the latter one shows the possibility of generalizing the
theorem to the case with disturbances in the dynamic equation.
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1. Introduction and notations

Set membership approaches to estimation problems have been studied for a long time [3, 10].
In 1968, Krasovskii proposed [7], and later Kurzhanski developed [8, 9] a more general theory
of guaranteed estimation without the statistics of disturbances based on results of convex and
functional analysis.

This paper is an addition to [2] which describes the approximation of the estimation problem
for joint constraints on the initial state and disturbances with the ellipsoid technique. In this case,
an optimization problem arises. The paper considers a simpler case when the exact information set
of the system can be found without solving an optimization problem. The technique of ellipsoidal
approximation is used, which was developed by Kurzhanski [9], Chernousko [4], and their followers
(see, for example, [6]).

The paper is structured as follows. First, we formulate the estimation problem in our case, then
construct exact information sets and their approximation using external ellipsoids. After that, we
prove the validity of the approximation. The latter part consists of three numerical examples.

Let us introduce the notation. Let

|x|Q =
√

x′Qx,

where x ∈ R
n and Q is a matrix with the property Q′ = Q > 0. For Q = I (an identity matrix),

we set |x|I = |x|. If M ⊂ R
n is convex and compact, then

ρ(l|M) = max
x∈M

l′x
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is a support function. The set

E(Q, c) = {x ∈ R
n | |x− c|Q 6 1}

is called an ellipsoid.

If a system is linear and non-stationary, i.e., ẋ = A(t)x, then its general solution has the form
x(t, t0, x0) = X(t, t0)x0, where X(t, t0) is a fundamental matrix, which can be found as a solution
to the equation Ẋ(t, t0) = A(t)X(t, t0), X(t0, t0) = I.

2. Problem statement

Consider a linear non-stationary system with measurements

ẋ = A(t)x, y = G(t)x+ w, t ∈ [0, T ], (2.1)

where x(t) ∈ R
n is a state vector, y(t) ∈ R

m is an output, w(t) ∈ R
m is an uncertain disturbance in

the measurement equation, and A(t) ∈ R
n×n and G(t) ∈ R

m×n are bounded continuous matrices.
Suppose that undefined functions w(·) in (2.1) and an initial state x0 satisfy the following integral
and geometric constraints, respectively:

∫ T

0
|w(t)|2R 6 1, R′(t) = R(t) > 0, (2.2)

x0 ∈ X0, (2.3)

where X0 ∈ R
n is a convex compact set bounding the initial state, and R(t) ∈ R

m×m is a contin-
uous positive definite matrix. The constraints are separate, i.e., (2.2) and (2.3) are independent.
According to the general theory of guaranteed estimation (see, for example, [9]) we can give a
definition.

Definition 1. A family of state vectors X (T, y) = {xT } is called an information set (IS) if,
for any xT ∈ X (T, y), there exists a function w and an initial state x0 satisfying constraints (2.2)
and (2.3) and such that equalities (2.1) hold almost everywhere with x(T ) = xT .

For system (2.1) under constraints (2.2) and (2.3), an exact set X (T, y) can be found.

Theorem 1. The set X (T, y) is an intersection

X (T, y) = X(T, 0)X0

⋂

X(T, y, 0, 0),

where X(T, s) is the fundamental matrix of system (2.1), X(T, y, 0, 0) is the IS for (2.1) and (2.2)
without constraints on the initial set (2.3).

Consider linear system (2.1) under constraint (2.2). A solution to the estimation problem is
the IS X(T, y, 0, 0), which is an ellipsoid x′P (T )x − 2x′d(T ) + q(T ) 6 1 whose parameters can be
found as solutions to the differential equations [1, 2]

Ṗ (t) = −A′(t)P − PA(t) +G′RG, P (0) = 0;

ḋ(t) = −A′(t)d+G′Ry, d(0) = 0;

q̇(t) = y′Ry, q(0) = 0.
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3. Approximation of information sets

The original problem included integral constraints on perturbations (2.2) and geometric con-
straints on the initial state (2.3) of the system. Geometric constraints in form (2.3) are complicated
to deal with. Kurzhanski proposed an approach for approximating arbitrary sets (see, for exam-
ple, [9]) by sets of ellipsoids. In this paper, we discuss the approximation by a set of external
ellipsoids.

We approximate the set of initial states X0 by a family of ellipsoids E(P0, c) ⊃ X0, where P0

is a symmetric positive definite matrix P ′
0 = P0 > 0. Then constraints (2.2) and (2.3) will be

approximated by the family of constraints

α|x0|
2
P0

+ (1− α)

∫ T

0
|w(t)|2R 6 1, α ∈ [0, 1]. (3.1)

Thus, we obtain the second estimation problem of (2.1) under constraints (3.1).
If disturbances w(t) satisfy the constraint in (2.2), then they necessarily obey the constraints

in (3.1). Therefore, it is possible to build an IS X(T, y, α, P0) for a real signal with different
parameters and use it to approximate the original IS X (T, y).

Lemma 1. The set X(T, y, α, P0) has the form of an ellipsoid

x′P (T )x− 2x′d(T ) + q(T ) 6 1,

where the parameters are defined as solutions to the differential equations [1, 2]

Ṗ = −A′(t)P − PA(t) +G′RG(1− α), P (0) = P0α;

ḋ = −A′(t)d+G′Ry(t)(1− α), d(0) = 0;

q̇ = y′(t)Ry(t)(1 − α), q(0) = 0.

(3.2)

Lemma 2 (Ellipsoid Separation Lemma). For every convex compact set M ⊂ R
n and a point

p /∈ M, there exist an ellipsoid E(Q, c) such that E(Q, c) ⊃ M and p /∈ E(Q, c).

P r o o f. It is known from convex analysis (see, for example, [5]), that the condition p /∈ M
implies the existence of a unit vector l1 such that l′1p > ρ(l1|M). Further, since the set M is fixed,
we use the shorter notation ρ(l). Let us complement the vector l1 to an orthonormal basis in R

n

with vectors {l2, . . . , ln}. Build a rectangular box along li centered at the point

c =

n
∑

i=1

li(ρ(li)− ρ(−li))/2

and having vertices at the points

Ak =
n
∑

i=1

kiliρ(kili) : Π =
{

x ∈ R
n | ρ(−li) 6 l′ix 6 ρ(li) ∀i ∈ 1 : n

}

.

Here, k ∈ K ⊂ R
n is a vector with coordinates ki = ±1. The number of such vectors and vertices

is 2n; the set K contains all such vectors k. Let us arrange the set K =
{

k1, . . . , k2n
}

assuming
that k1 = [1; . . . ; 1]. This box will contain the original compact set: Π ⊃ M .

We introduce an orthogonal matrix T = [l1, . . . , ln] and perform an orthogonal transformation
to new coordinates y = T ′x. In the new coordinates, the set M becomes M∗ = T ′M , and the box
Π becomes the box Π∗ = T ′Π with center c∗ = T ′c and edges parallel to the coordinate axes. We
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have l′1p = l′1Tp = [1, 0, . . . , 0]p∗ = p∗1 > ρ(l1) by the condition. We build an ellipsoid with the
center c∗ through the vertices of the box A∗

k and axes parallel to the coordinate axes, consisting of
vectors of the form c∗ + y, where the coordinates of the vector y satisfy the equation

n
∑

i=1

y2i /b
2
i = 1. (3.3)

Denote by ai = (ρ(li)+ρ(−li))/2 the box semiaxes. Let us choose the parameters bi of the ellipsoid
so that

n
∑

i=1

a2i /b
2
i = 1, ρ(l1) < b1 + c∗1 < p∗1. (3.4)

Since ρ(l1)− c∗1 = a1 < b1, the other bi can be taken equal to ai + t, i ∈ 2 : n, where t can be found
from the equation

n
∑

i=2

a2i /(ai + t)2 = 1− a21/b
2
1. (3.5)

The obtained ellipsoid E∗ with conditions (3.3), (3.4), and (3.5) is such that E∗ ⊃ Π∗ ⊃ M∗

and p∗ /∈ E∗. We obtain the desired ellipsoid with the properties E(Q, c) ⊃ Π ⊃ M and
p /∈ E(Q, c) by performing the inverse transformation x = Ty. Here, the matrix Q = TΛT ′ and
Λ = diag(1/b1, . . . , 1/bn). �

Remark 1. If the set M is centrally symmetric, then c = 0.

Theorem 2. Let X0 be a centrally symmetric set. Then the set X (T, y) is an intersection

X (T, y) =
⋂

P0∈P0, α

X(T, y, P0, α),

where P0 is a set of symmetric positive matrices P0 such that E(P0, 0) ⊃ X0.

P r o o f. We construct the proof by contradiction. Consider the inclusion

X (T, y) ⊃
⋂

P0∈P0,α

X(T, y, P0, α).

Let
x∗ ∈

⋂

P0∈P0,α

X(T, y, P0, α),

but x∗ /∈ X (T, y). Then either x∗ /∈ X(T, y, 0, 0) or x∗ /∈ X(T, 0)X0. The first is impossible, since
X(T, y, 0, 0) is among X(T, y, P0, α) when the parameters P0 = 0 and α = 0 are chosen. Consider
the second possibility. If x∗ /∈ X(T, 0)X0 is true, then x0 = X(0, T )x∗ /∈ X0. By Lemma 2 and
Remark 1, there exists an ellipsoid E(Q, 0) containing X0 but not containing x0. There is also a
parameter α such that x∗ /∈ X(T, y,Q, α).

We get a contradiction, since the set includes only vectors x∗, for which x′0Qx0 6 1 and
x∗ ∈ X(T, y, 0, 0). The embedding

⋂

P0∈P0,α

X(T, y, P0, α) ⊃ X (T, y)

is obvious. �
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4. Numerical examples

4.1. Double integrator

Consider the one-dimensional equations of motion of a material point

ẋ1 = x2, ẋ2 = 0.

The set of possible initial states is a square:

X0 = {x0 : |x
1
0| 6 1, |x20| 6 1}.

The measurement y(t) are related to the state vector via the observation equation

y = x1 +w(t),

where w(t) is the measurement noise satisfying the integral constraint

∫ T

0
w2(t)dt 6 1.

Figure 1. The set of possible initial states (black dashed line) and its approximation by external ellipses
(pink fill).

Fig. 1 shows the approximation of the set of possible initial states by the intersection of a
one-parameter family of ellipsoids with diagonal matrices P0 = [a, 0; 0, 1−a], where a ∈ (0, 1). The
intersection of the family of ellipses does not perfectly approximate the set of initial states, which is
a square; to avoid this, one should use degenerate ellipsoids. Then, each ellipse {x | x′P0x 6 1} will
contain the square of initial states X0, and their intersection will give an external approximation.

The parameters here are G = [1, 0], A = [0, 1; 0, 0], and T = 2. For illustration, let us choose
the signal generated by the admissible function w(t) = 0.8 cos(t) and the admissible initial state
x0 = [1;−1]/2. Fig. 2 shows an approximation of the IS by a set of ellipsoids. The approximation
of the IS (the white area on the left side of Fig. 2) coincides with the exact IS (the pink area on
the right side of Fig. 2). The exact IS is obtained by the intersection of the reachable set at the
terminal time (the black dashed line) and the IS without constraints on the initial state (the red
dashed line).
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Figure 2. Double integrator. Approximation of the IS (on the left side) and the exact IS (on the right side).
The red dot is the true state, the black dashed line is the reachable set at the terminal time (T = 2), and
the red dashed line is the IS without constrains on the initial state.

4.2. Mathematical pendulum

Consider the equation
ẋ1 = x2, ẋ2 = −25x1.

The set of possible initial states is a circle: X0 = {x0 : |x0| 6 1}. The measurement equation is
given by

y = x1 + 0.8 cos(t),

where w(t) is the measurement noise, for which

∫ T

0
|y(t)− x1(t)|2dt 6 1

holds. The parameters here are G = [1, 0], A = [0, 1;−25, 0], and T = 2. The implementation of
disturbances and the initial state coincide with those in the previous example: w(t) = 0.8 cos(t)
and x0 = [1; 1]/2.

4.3. Double integrator II

Consider a one-dimensional motion of a material point under disturbances w1(t) [2]:

ẋ1 = x2, ẋ2 = w1(t), 0 6 t 6 T.

Let the disturbances w1 also affect the measurement equation y(t) = x1(t) + w1(t) + w2(t), where
w2 is the measurement noise. Unfortunately, the calculation in [2] is inaccurate. Therefore, we
need perform a new one. Define w1 −w2 by z(t). Since w1 +w2 = y − x1, we obtain the following
equations:

ẋ1 = x2, ẋ2 =
(

y − x1 + z(t)
)

/2. (4.1)

The vector-valued function w(t) subjects to the integral constraint (2.2) with

R = I2, V = R
2, X0 =

{

x ∈ R
2 | |x10| 6 1, |x20| 6 1

}

,
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Figure 3. Mathematical pendulum. Approximation of the IS (left) and the exact IS (right). The red dot is
the true state, the black dashed line is the reachable set at the terminal time (T = 2), and the red dashed
line is the IS without constrains on the initial state.

i.e., this is the case of the absence of geometric constraints on w(t). Since

(w1 + w2)2 + z2 = 2|w|2,

inequality (2.2) takes the form

J(T, xT , v, y) =

∫ T

0

(

∣

∣y(t)− x1(t)
∣

∣

2
+ z2(t)

)

dt/2 6 1. (4.2)

The constraints on initial states are the same as in the first example: a square is approximated
by a one-parameter family of ellipses with diagonal matrices P0 = [a, 0; 0, 1 − a], where a ∈ (0, 1).
Then, each ellipse {x | x′P0x 6 1} contains the square of initial states X0. Let is choose one more
parameter α ∈ (0, 1) and consider the constraints

(1− α)|x0|
2
P0

+ αJ(T, xT , v, y) < 1, (4.3)

where J is defined in (4.2). The IS X
a,α
T (y) for (4.1) under constrains (4.3) will contain the original

IS XT (y) for any signal in the original system. We will use relations (3.2). Then, we have

X
a,α
T (y) =

{

xT | |xT − x̂(T )|2P (T ) + h(T ) < 1
}

,

Ṗ = −P (t)Ã− Ã′P (t) + αG′G/2 − P (t)bC1b
′P (t)/α, P (0) = (1− α)P0;

˙̂x(t) = Ax̂(t) + α
(

bc′ + P−1(t)G′
)

(y(t)− x̂1(t))/2,

ḣ(t) = α
∣

∣y(t)− x̂1(t)
∣

∣

2
/2.

The parameters here are the same as in [2]: b = [0, 0; 1, 0], c = [1, 1], G = [1, 0], C = 1/2,
C1 = [1,−1;−1, 1]/2, and Ã = [0, 1;−0.5, 0]. We take the signal generated by the admissible
functions w1(t) = 0.8 cos(t) and w2(t) = 0.8 sin(t) and the admissible initial state x0 = [1;−1]/2.

5. Conclusion

The problem of estimating the state vector for a linear autonomous system under uncertainty
has been solved. For such systems, the IS can be obtained as an intersection of ellipsoids. The third
example shows that this can be also true for systems with disturbances in the dynamics equation.
The issue will be considered in subsequent works.
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Figure 4. Double integrator II. The red dot is the true state at time T = 3.
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