NOTE ON SUPER $(a, 1)-P_{3}$-ANTIMAGIC TOTAL LABELING OF STAR S_{n}

S. Rajkumar ${ }^{\dagger}$, M. Nalliah ${ }^{\dagger \dagger}$ and Madhu Venkataraman ${ }^{\dagger \dagger \dagger}$
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
Vellore-632 014, India
${ }^{\dagger}$ raj26101993@gmail.com, ${ }^{\dagger \dagger}$ nalliahklu@gmail.com, ${ }^{\dagger \dagger \dagger}$ madhu.v@vit.ac.in

Abstract

Let $G=(V, E)$ be a simple graph and H be a subgraph of G. Then G admits an H-covering, if every edge in $E(G)$ belongs to at least one subgraph of G that is isomorphic to H. An $(a, d)-H$-antimagic total labeling of G is bijection $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots,|V(G)|+|E(G)|\}$ such that for all subgraphs H^{\prime} of G isomorphic to H, the H^{\prime} weights $w\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)$ constitute an arithmetic progression $\{a, a+d, a+2 d, \ldots, a+(n-1) d\}$, where a and d are positive integers and n is the number of subgraphs of G isomorphic to H. The labeling f is called a super $(a, d)-H$-antimagic total labeling if $f(V(G))=\{1,2,3, \ldots,|V(G)|\}$. In [5], David Laurence and Kathiresan posed a problem that characterizes the super $(a, 1)-P_{3}$-antimagic total labeling of $\operatorname{Star} S_{n}$, where $n=6,7,8,9$. In this paper, we completely solved this problem.

Keywords: H-covering, Super $(a, d)-H$-antimagic, Star.

1. Introduction

Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$ be simple and finite graphs. Let $|V(G)|=v_{G}$, $|E(G)|=e_{G},|V(H)|=v_{H}$ and $|E(H)|=e_{H}$. An edge covering of G is a family of different subgraphs $H_{1}, H_{2}, H_{3}, \ldots, H_{k}$ such that any edge of $E(G)$ belongs to at least one of the subgraphs $H_{j}, 1 \leq j \leq k$. If the $H_{j}^{\prime} \mathrm{s}$ are isomorphic to a given graph H, then G admits an H-covering. Gutienrez and Lladó [2] defined H-magic labeling, which is a generalization of Kotzig and Rosa's edge magic total labeling [4]. A bijection $f: V(G) \cup E(G) \rightarrow\left\{1,2,3, \ldots, v_{G}+e_{G}\right\}$ is called an H magic labeling of G if there exists a positive integer k such that each subgraph H^{\prime} of G isomorphic to H satisfies

$$
w\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)=k .
$$

In this case, they say that G is H-magic. When $f(V(G))=\left\{1,2,3, \ldots, v_{G}\right\}$, we say that G is H-super magic. On the other hand, Inayah et al. [3] introduced $(a, d)-H$-antimagic total labeling of G which is defined as a bijection $f: V(G) \cup E(G) \rightarrow\left\{1,2,3, \ldots, v_{G}+e_{G}\right\}$ such that for all subgraphs H^{\prime} of G isomorphic to H, the set of H^{\prime}-weights

$$
w\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)
$$

constitutes an arithmetic progression $a, a+d, a+2 d, \ldots, a+(n-1) d$, where a and d are some positive integers and n is the number of subgraphs isomorphic to H. In this case, they say that G is $(a, d)-H$-antimagic. If $f(V(G))=\left\{1,2,3, \ldots, v_{G}\right\}$, they say that f is a super $(a, d)-H$ antimagic total labeling and G is super $(a, d)-H$-antimagic. This labeling is a more general case of super (a, d)-edge-antimagic total labelings. If $H \cong K_{2}$, then we say that super $(a, d)-H$-antimagic
labelings, which is also called super (a, d)-edge-antimagic total labelings and have been introduced in [6]. They studied some basic properties of such labeling and also proved the following theorem.

Theorem 1 [3]. If G has a super $(a, d)-H$-antimagic total labeling and t is the number of subgraphs of G isomorphic to H, then G has a super $\left(a^{\prime}, d\right)-H$-antimagic total labeling, where $a^{\prime}=\left[\left(v_{G}+1\right) v_{H}+\left(2 v_{G}+e_{G}+1\right) e_{H}\right]-a-(t-1) d$.

Several authors are studied antimagic type labeling of graphs see [1]. In 2015, Laurence and Kathiresan [5] obtained an upper bound of d for any graph G, and they investigated the existence of super $(a, d)-P_{3}$-antimagic total labeling of star graph S_{n}. First, they observed that S_{n} admits a P_{h}-covering for $h=2,3$, and the star S_{n} contains

$$
t=\binom{n}{h-1}
$$

subgraphs $P_{h}, h=2,3$, which is denoted by $P_{h}^{j}, 1 \leq j \leq h$. In 2005, Sugeng et al. [7] investigated the case $h=2$ using super (a, d)-edge-antimagic total labeling. In 2015, the case of $h=3$ was investigated by Laurence and Kathiresan [5]. Here they observed that if the star $S_{n}, n \geq 3$ admits a super $(a, d)-P_{3}$-antimagic total labeling then $d \in\{0,1,2\}$. Now, they proved the star $S_{n}, n \geq 3$ has super $(4 n+7,0)-P_{3}$-antimagic total labeling and $S_{n}, n \geq 3$ admits a super $(a, 2)-P_{3}$-antimagic total labeling if and only if $n=3$. Also, they proved the following theorems and posed a problem.

Theorem 2 [5]. If the star $S_{n}, n \geq 3$ has super ($a, 1$)-P3-antimagic total labeling, then $3 \leq n \leq 9$. Moreover, the star S_{n} admits a super ($a, 1$)- P_{3}-antimagic total labeling, where $a=19$, for $n=3$ and $a=21$, for $n=4$.

Theorem 3 [5]. For $n=5$, the star S_{n} has no super ($a, 1$)-P3-antimagic total labeling.
Problem 1. [5] For each $n, 6 \leq n \leq 9$ characterize the super $(a, 1)-P_{3}$-antimagic total labeling for the star S_{n}.

In this paper, we present the complete solution to the above problem.

2. Main Results

Let $S_{n} \cong K_{1, n}, n \geq 1$ be the star graph and let v_{0} be the central vertex and let $v_{i}, 1 \leq i \leq n$ be its adjacent vertices. Thus S_{n} has $n+1$ vertices and n edges.

Theorem 4. The star S_{6} has no super $(a, 1)-P_{3}$-antimagic total labeling.
Proof. Let $V\left(S_{6}\right)=\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $E\left(S_{6}\right)=\left\{v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{3}, v_{0} v_{4}, v_{0} v_{5}, v_{0} v_{6}\right\}$ be the vertex set and the edge set of Star S_{6}. Suppose there exists a super $(a, 1)-P_{3}$-antimagic total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, 13\}$ for S_{6} and let v_{0} be the central vertex of S_{6}. In the computation of P_{3} - weights the label of the central vertex $v_{0}, f\left(v_{0}\right)$ is used 15 times and label of other vertices and edges say i are used 5 times each. Therefore,

$$
10 f\left(v_{0}\right)+5 \sum_{i=1}^{13}(i)=\frac{15}{2}[2 a+14],
$$

which implies $a=\left(70+2 f\left(v_{0}\right)\right) / 3$. Since $1 \leq f\left(v_{0}\right) \leq 7$, it follows that $a=24$ if $f\left(v_{0}\right)=1, a=26$ if $f\left(v_{0}\right)=4$ and $a=28$ if $f\left(v_{0}\right)=7$.

Figure 1. There is no possible to obtain P_{3}-weight 27.

Case (i): $f\left(v_{0}\right)=1$. Then $a=24$ and the P_{3} - weights of S_{6} are given by $W=$ $\{24,25, \ldots, 38\}$. Now, the P_{3} - weight 24 is getting exactly two possible 5 elements sum $(1,2,4,8,9)$ or $(1,2,3,8,10)$ and hence the label of edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{3}$ or $v_{0} v_{2}$ is $f\left(e_{1}\right)=8$ and $f\left(e_{2}\right)=9$ or 10 .

Subcase (i): $f\left(e_{2}=v_{0} v_{3}\right)=9$. Then $a=24$ and hence the label of the vertices and edges are $f\left(v_{0}\right)=1, f\left(v_{1}\right)=2, f\left(v_{3}\right)=4, f\left(e_{1}=v_{0} v_{1}\right)=8$ and $f\left(e_{2}=v_{0} v_{3}\right)=9$. Now, the $P_{3}-$ weight 25 is getting exactly one possible 5 elements sum ($1,2,3,8,11$) and hence the label of an edge $e_{3}=v_{0} v_{2}$ is $f\left(e_{3}\right)=11$. Also,the P_{3} - weight 26 is getting exactly one possible 5 elements sum $(1,2,5,8,10)$ and hence the label of an edge $e_{4}=v_{0} v_{4}$ is $f\left(e_{4}\right)=10$.

Let $x=v_{0} v_{5}$ and $y=v_{0} v_{6}$ be two edges of S_{6} (see Fig. 1). Clearly, the label of the edges x and y is $f(x)=12$ or 13 and $f(y)=13$ or 12 . If $f(x)=12$ then $f(y)=13$ and hence there is no P_{3} - weight 27. Also, if $f(x)=13$ then $f(y)=12$ and hence there is no P_{3} - weight 27 , which is a contradiction.

A similar contradiction arises, if the edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$ with $f\left(e_{1}=9\right)$ and $f\left(e_{2}\right)=8$ for the P_{3} - weight 24 is used to getting the P_{3} - weight 27 .

Subcase (ii): $f\left(e_{2}=v_{0} v_{2}\right)=10$. Then $a=24$ and hence the label of the vertices and edges of P_{3} - weight 24 is $f\left(v_{0}\right)=1, f\left(v_{1}\right)=2, f\left(v_{2}\right)=3, f\left(e_{1}=v_{0} v_{1}\right)=8$ and $f\left(e_{2}=v_{0} v_{2}\right)=10$. Now, the P_{3} - weight 25 is getting exactly one possible 5 elements sum ($1,2,5,8,9$) and hence the label of an edge $e_{3}=v_{0} v_{4}$ is $f\left(e_{3}\right)=9$. Also, the P_{3} - weight 26 is getting exactly one possible 5 elements sum $(1,2,4,8,11)$ and hence the label of an edge $e_{4}=v_{0} v_{3}$ is $f\left(e_{4}\right)=11$. Let $x=v_{0} v_{5}$ and $y=v_{0} v_{6}$ be two edges of S_{6} (see Fig. 2). Clearly, the label of the edges x and y is $f(x)=12$ or 13 and $f(y)=13$ or 12 . If $f(x)=12$ then $f(y)=13$ and hence there is no P_{3} - weight 27 . Also, If $f(x)=13$ then $f(y)=12$ and hence there is no P_{3} - weight 27 , which is a contradiction.

A similar contradiction arises, if the edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$ with $f\left(e_{1}\right)=10$ and $f\left(e_{2}\right)=8$ for the P_{3} - weight 24 is used to getting the P_{3} - weight 27 .

Case (ii): $f\left(v_{0}\right)=7$. Then $a=28$. Now, if f is a super $(28,1)-P_{3}$-antimagic total labeling of S_{6}, then by Theorem $1[3], \bar{f}$ is a super $(24,1)-P_{3}$-antimagic total labeling, which does not exist by Case (i).

Case (iii): $f\left(v_{0}\right)=4$. Then $a=26$ and hence the P_{3} - weights of S_{6} are given by $W=$ $\{26,27, \ldots, 40\}$. Now, the P_{3} - weight 26 is getting exactly four possibles 5 elements sum such as $(4,1,2,8,11),(4,1,2,9,10),(4,2,3,8,9)$ and $(4,1,3,8,10)$ and hence the edges $e_{1}=v_{0} v_{1}$ or $v_{0} v_{2}$ and $e_{2}=v_{0} v_{2}$ or $v_{0} v_{3}$ with $f\left(e_{1}\right)=8$ or 9 and $f\left(e_{2}\right)=9$ or 10 or 11 .

Subcase (i): $f\left(e_{1}=v_{0} v_{1}\right)=8$ and $f\left(e_{2}=v_{0} v_{2}\right)=11$. Then $a=26$ and hence the label of the vertices and edges of P_{3} - weight 26 is $f\left(v_{0}\right)=4, f\left(v_{1}\right)=1, f\left(v_{2}\right)=2, f\left(e_{1}=v_{0} v_{1}\right)=8$ and

Figure 2. The possible edge labels x and y are obtain P_{3}-weight 27 .

Figure 3. There is no possible to obtain P_{3}-weight 30 .
$f\left(e_{2}=v_{0} v_{2}\right)=11$. Now, the P_{3} - weight 27,28 and 29 are getting exactly one possible 5 elements sum $(4,1,5,8,9),(4,1,3,8,12)$ and $(4,1,6,8,10)$. Hence the label of the edges $e_{3}=v_{0} v_{3}, e_{4}=v_{0} v_{4}$, $e_{5}=v_{0} v_{5}$ and $e_{6}=v_{0} v_{6}$ is $f\left(e_{3}\right)=12, f\left(e_{4}\right)=9, f\left(e_{5}\right)=10$ and $f\left(e_{6}\right)=13$. From Fig. 3, there is no P_{3} - weight is 30 , which is a contradiction.

A similar contradiction arises, if the edges e_{1} and e_{2} with $f\left(e_{1}=v_{0} v_{1}\right)=11$ and $f\left(e_{2}=v_{0} v_{2}\right)=8$ for P_{3} - weight 26 are used to getting the P_{3} - weight 33, for more details see Fig. 4.

Subcase (ii): $f\left(e_{1}=v_{0} v_{1}\right)=9$ and $f\left(e_{2}=v_{0} v_{2}\right)=10$. Then $a=26$ and hence the label of the vertices and edges of P_{3} - weight 26 is $f\left(v_{0}\right)=4, f\left(v_{1}\right)=1, f\left(v_{2}\right)=2, f\left(e_{1}=v_{0} v_{1}\right)=9$ and $f\left(e_{2}=v_{0} v_{2}\right)=10$. Now, the P_{3} - weight 27 is getting exactly two possibles 5 elements sum such as $(4,2,3,10,8),(4,1,5,9,8)$ and hence the label of the edges $e_{3}=v_{0} v_{3}$ or $v_{0} v_{4}$ is $f\left(e_{3}\right)=8$. If an edge $e_{3}=v_{0} v_{3}$ with $f\left(e_{3}\right)=8$ then we get the P_{3} - weight as sum of 5 elements $(4,1,3,9,8)$ is 25 , which is a contradiction. If an edge $e_{3}=v_{0} v_{4}$ with $f\left(e_{3}\right)=8$ then we get the P_{3} - weights from 28 to 32 are getting exactly one possible 5 elements sum such as $(4,1,3,9,11),(4,2,5,10,8),(4,2,3,10,11),(4,3,5,11,8)$ and $(4,1,6,9,12)$. From Fig. 5 , there is no P_{3} - weight 33 , which is a contradiction.

A similar contradiction arises, if the edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$ with $f\left(e_{1}=v_{0} v_{1}\right)=10$ and $f\left(e_{2}=v_{0} v_{2}\right)=9$ for the P_{3} - weight 26 is used to getting the P_{3} - weight 27 , which is a contradiction.

Subcase (iii): $f\left(e_{1}=v_{0} v_{2}\right)=8$ and $f\left(e_{2}=v_{0} v_{3}\right)=9$. Then $a=26$ and hence the label of the vertices and edges of P_{3} - weight 26 is $f\left(v_{0}\right)=4, f\left(v_{2}\right)=2, f\left(v_{3}\right)=3, f\left(e_{1}=v_{0} v_{2}\right)=8$ and $f\left(e_{2}=v_{0} v_{3}\right)=9$. Now, the P_{3} - weight 27 is getting exactly one possible 5 elements sum $(4,1,3,9,10)$ and hence the label of an edge $e_{3}=v_{0} v_{1}$ is $f\left(e_{3}\right)=10$. Thus, we get a P_{3} - weight

Figure 4. The possible edge label is obtain to P_{3}-weight 33 .

Figure 5. There is no possible to obtain P_{3}-weight 33 .
as sum of 5 elements $(4,1,2,10,8)$ is 25 , which is a contradiction.
A similar contradiction arises, if the edges $e_{1}=v_{0} v_{2}$ and $e_{2}=v_{0} v_{3}$ with $f\left(e_{1}=v_{0} v_{2}\right)=9$ and $f\left(e_{2}=v_{0} v_{3}\right)=8$ for the P_{3} - weight 26. The P_{3} - weight 27 is getting exactly one possible 5 elements sum $(4,1,2,11,9)$ and hence the label of an edge $f\left(e_{3}=v_{0} v_{1}\right)=11$. Thus, we get the $P_{3}=\left(v_{0}, v_{1}, v_{3}, e_{3}=v_{0} v_{1}, e_{2}=v_{0} v_{3}\right)$ with weight $(4+1+3+11+8)$ is 27 , which is a contradiction.

Subcase (iv): $f\left(e_{1}=v_{0} v_{1}\right)=8$ and $f\left(e_{2}=v_{0} v_{3}\right)=10$. Then $a=26$ and hence the label of the vertices and edges of P_{3} - weight 26 is $f\left(v_{0}\right)=4, f\left(v_{1}\right)=1, f\left(v_{3}\right)=3, f\left(e_{1}=v_{0} v_{1}\right)=8$ and $f\left(e_{2}=v_{0} v_{3}\right)=10$. Now, the P_{3} - weight 27 is getting exactly two possibles 5 elements sum such as $(4,1,2,8,12),(4,1,5,8,9)$ and hence the label of the edges $e_{3}=v_{0} v_{2}$ or $v_{0} v_{4}$ is $f\left(e_{3}\right)=12$ or 9. If an edge $e_{3}=v_{0} v_{2}$ with $f\left(e_{3}\right)=12$ then the P_{3} - weights 28 and 29 are getting exactly one possible 5 elements sum $(4,1,6,8,9)$ and $(4,1,5,8,11)$. From Fig. 6, there is no P_{3} — weight 30 , which is a contradiction. If an edge $e_{4}=v_{0} v_{4}$ with $f\left(e_{4}\right)=9$ then the P_{3} - weight 28 is getting exactly one possible 5 elements sum ($4,1,2,8,13$) and hence the label of an edge $e_{5}=v_{0} v_{2}$ is $f\left(e_{5}\right)=13$. From Fig. 7, there is no P_{3} - weight 29 when $x=11$ or 12 and $y=12$ or 11, which is a contradiction.

A similar contradiction arises, if the edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{3}$ with $f\left(e_{1}=v_{0} v_{1}\right)=10$ and $f\left(e_{2}=v_{0} v_{3}\right)=8$ for the P_{3} - weight 26 are used to getting the P_{3} - weight 27, which is a contradiction.

Theorem 5. The star S_{7} has no super $(a, 1)-P_{3}$-antimagic total labeling.
Proof. Let $V\left(S_{7}\right)=\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ and $E\left(S_{7}\right)=\left\{v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{3}, v_{0} v_{4}, v_{0} v_{5}\right.$, $\left.v_{0} v_{6}, v_{0} v_{7}\right\}$ be the vertex and edge set of star S_{7}. Suppose there exists a super $(a, 1)-P_{3}$-antimagic total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, 15\}$ for S_{7} and let v_{0} be the central vertex of S_{7}. In the

Figure 6. There is no possible to obtain P_{3}-weight 30 .

Figure 7. There is no possible to obtain P_{3}-weight 29.
computation of P_{3} - weights the label of the central vertex $v_{0}, f\left(v_{0}\right)$ is used 21 times and label of other vertices and edges say i are used 6 times each. Therefore,

$$
15 f\left(v_{0}\right)+6 \sum_{i=1}^{15}(i)=\frac{21}{2}[2 a+20],
$$

which implies that we get

$$
a=\frac{15 f\left(v_{0}\right)+510}{21} .
$$

Since $1 \leq f\left(v_{0}\right) \leq 8$, we have only two values a such as $a=25$ if $f\left(v_{0}\right)=1$ and $a=30$ if $f\left(v_{0}\right)=8$.
Case (i): $f\left(v_{0}\right)=1$. Then $a=25$ and the P_{3} — weights of S_{7} is given by $W=\{25,26, \ldots, 45\}$. Now, the P_{3} - weight 25 is getting exactly one possible 5 elements sum ($1,2,3,9,10$) and hence the label of edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$ is $f\left(e_{1}\right)=9$ and $f\left(e_{2}\right)=10$. Since the minimum possible sum of vertices labels for P_{3} - weight is 7 , it follows that there is no P_{3} - weight 26, which is a contradiction. A similar contradiction arises, if the edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$ with $f\left(e_{1}\right)=10$ and $f\left(e_{2}\right)=9$ for the P_{3} - weight 25 is used to getting the P_{3} - weight 27 .

Case (ii): $f\left(v_{0}\right)=8$. Then $a=30$. Now, if f is a super $(30,1)-P_{3}$-antimagic total labeling of S_{6}, then by Theorem $1[3], \bar{f}$ is a super $(25,1)-P_{3}$-antimagic total labeling, which does not exist by Case (i).

Theorem 6. The star S_{8} has no super ($\left.a, 1\right)-P_{3}$-antimagic total labeling.
Proof. Let $V\left(S_{8}\right)=\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ and $E\left(S_{8}\right)=\left\{v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{3}, v_{0} v_{4}, v_{0} v_{5}\right.$, $\left.v_{0} v_{6}, v_{0} v_{7}, v_{0} v_{8}\right\}$ be the vertex and edge set of star S_{8}. Suppose there exists a super $(a, 1)-P_{3}$ antimagic total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, 17\}$ for S_{8} and let v_{0} be the central vertex of S_{8}.

In the computation of P_{3} - weights the label of the central vertex $v_{0}, f\left(v_{0}\right)$ is used 28 times and label of other vertices and edges say i are used 7 times each. Therefore,

$$
21 f\left(v_{0}\right)+7 \sum_{i=1}^{17}(i)=\frac{28}{2}[2 a+27],
$$

which implies that we get

$$
a=\frac{21 f\left(v_{0}\right)+693}{28}
$$

Since $1 \leq f\left(v_{0}\right) \leq 9$, we have only two values a such as $a=27$, if $f\left(v_{0}\right)=3$ and $a=30$, if $f\left(v_{0}\right)=7$.
Case (i): $f\left(v_{0}\right)=3$. Then $a=27$ and the P_{3} - weights of S_{8} is given by $W=\{27,28, \ldots, 54\}$. Now, the P_{3} - weight 27 is getting exactly one possible 5 elements sum ($3,1,2,10,11$) and hence the label of edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$ is $f\left(e_{1}\right)=10$ and $f\left(e_{2}\right)=11$. Since the minimum possible sum of vertices labels for P_{3} - weight is 8 , it follows that there is no P_{3} - weight 29, which is a contradiction. A similar contradiction arises, if the edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$ with $f\left(e_{1}\right)=11$ and $f\left(e_{2}\right)=10$ for the P_{3} - weight 27 is used to getting the P_{3} - weight 29 .

Case (ii) $f\left(v_{0}\right)=7$ Then $a=30$. Now, if f is a super (30,1) - P_{3}-antimagic total labeling of S_{6}, then by Theorem $1[3], \bar{f}$ is a super $(27,1)-P_{3}$-antimagic total labeling, which does not exist by Case (i).

Theorem 7. The star S_{9} has no super $(a, 1)-P_{3}$-antimagic total labeling.
Proof. Let $V\left(S_{9}\right)=\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$ be the vertex set of star S_{9}. Suppose there exists a super ($a, 1$) - P_{3}-antimagic total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, 19\}$ for S_{9} and let v_{0} be the central vertex of S_{9}. In the computation of P_{3} - weights the label of the central vertex $v_{0}, f\left(v_{0}\right)$ is used 36 times and label of other vertices and edges say i are used 8 times each. Therefore,

$$
28 f\left(v_{0}\right)+8 \sum_{i=1}^{19}(i)=\frac{36}{2}[2 a+35],
$$

which implies that we get

$$
a=\frac{14 f\left(v_{0}\right)+445}{18} .
$$

Since $1 \leq f\left(v_{0}\right) \leq 10$, we have that a is not an integer, which is a contradiction.

From Theorem 2-3 [5], Theorem 4-7, we get the following result.
Theorem 8. The star $S_{n}, n \geq 3$ admits a super (a,1)- P_{3}-antimagic total labeling if and only if $n=3$ and 4 .

3. Conclusion and Scope

In [5], they investigated the existence of super $(a, d)-P_{3}$-antimagic total labeling of star S_{n} and posed the Problem 1 [5]. This paper proved the star S_{n} has no super $(a, 1)$ - P_{3}-antimagic total labeling, where $n=6,7,8,9$. Therefore, we have entirely solved Problem 1 [5].

Acknowledgements

The authors are thankful to the reviewers for helpful suggestions which led to substantial improvement in the presentation of the paper.

REFERENCES

1. Gallian J. A. A dynamic survey of graph labelling. The Electronic J. Comb., 2017. No. DS6. P. 1-576 DOI: 10.37236/27
2. Gutiénrez A., Lladó A. Magic coverings. J. Combin. Math. Combin. Comput., 2005. Vol. 55. P. 43-56.
3. Inayah N., Salman A.N.M., Simanjuntak R. On $(a, d)-H$-antimagic coverings of graphs. J. Combin. Math. Combin. Comput., 2009. Vol. 71. P. 273-281.
4. Kotzig A., Rosa A. Magic valuations of finite graph. Canad. Math. Bull., 1970. Vol. 13, No. 4. P. 451-461. DOI: 10.4153/CMB-1970-084-1
5. Laurence S. D., Kathiresan K. M. On super $(a, d)-P_{h}$-antimagic total labeling of Stars. AKCE J. Graphs Combin., 2015. Vol. 12. P. 54-58. DOI: 10.1016/j.akcej.2015.06.008
6. Simanjuntak R., Bertault F., Miller M. Two new (a, d)-antimagic graph labelings. In: Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), Hunter Valley, Australia. 2000. P. 179-189.
7. Sugeng K. A., Miller M., Slamin, Bača M., (a, d)-edge-antimagic total labelings of caterpillars. In: Combinatorial Geometry and Graph Theory. IJCCGGT 2003. Akiyama J., Baskoro E.T., Kano M. eds. Lecture Notes in Comput. Sci., vol. 3330. 2003. P. 169-180. DOI: 10.1007/978-3-540-30540-8_19
