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Abstract: In this paper we give a solution of the problem of the best approximation in the uniform norm of
the differentiation operator of order k£ by bounded linear operators in the class of functions with the property
that the Fourier transforms of their derivatives of order n (0 < k < n) are finite measures. We also determine
the exact value of the best constant in the corresponding inequality for derivatives.
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This paper is devoted to studying the best approximation in the uniform norm on the real line
of the differentiation operator of order k by bounded linear operators in the class of functions with
the property that the Fourier transforms of their derivatives of order n (0 < k < n) are finite
measures. S. B. Stechkin [8] was the first who studied the problem of the best approximation of
the differentiation operator (or, more generally, of an unbounded operator) by bounded ones. In
particular, he noticed that this problem is connected to the best constant in an inequality between
the norms of the derivatives. Later these questions were studied by Yu. N. Subbotin, L. V. Taikov,
V. N. Gabushin, A. P. Buslaev, the author, and others (see [1-6, 8-10] and the bibliography therein).

Let C' = C(—o00, 00) be the space of continuous bounded (complex-valued) functions on the real
line with the uniform norm, let M be the space of finite (complex) Borel measures on (—o00, 00)
with the norm equal to the total variation \/ u of a measure yu, and let L,, 1 < r < oo, be the space
of measurable functions with the (finite) norm

)l = </|a:(t)]’“dt>i.

The Fourier transform z of a function € Ly is defined by the formula
z(t) = /62”“7"1:(77) dn.

In this case the inverse Fourier transform has the form
z(t) = /eQ“t”i x(n) dn.

Further on, let S be the space of infinitely differentiable, rapidly decreasing functions on the real
line, and let S’ be the corresponding dual space of generalized functions. We will denote the value
of a functional § € S’ on the function € S by (f,z). The Fourier transform 0 of a functional
§ € S’ is the functional § € S acting according to the rule (§,z) = (6,z). If 0 € L,, 1 <y < 2,

thengeLwl,%%—%:l.

IThe paper was originally published in a hard accessible collection of articles Approzimation of Functions
by Polynomials and Splines (UNTs AN SSSR, Sverdlovsk, 1985), p. 3-14 (in Russian).
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Denote by F,,, n > 1, the set of functions z € C' whose derivatives z(™ of order n are continuous
functions such that their Fourier transforms are measures, i. e.

o) = [ autn), 1)

where p1 = p, = (™ € M. We will denote the total variation \/ 1 of a measure p in (1) by |2 ||y
We will consider the subclass Q,, = {z € F, : ||z < 1} in F,. We study the problem of the
best approximation of the differentiation operator of order k (0 < k < mn) on the class @,, by the
set L(N) of linear bounded operators T in the space C' with the norm ||T|| = ||T]jc—c < N. In
other words, we study the quantity

e(N) =epn(N)=inf{u(T): T € L(N)}, (2)

where N
w(T) = upn(T) = sup {||z®) — Tz|c: z € Qn}. (3)

Our main results are the following two statements.

Theorem 1. For each h > 0 we have

et (Vi (1)) = S, @

where = X
Niah) =55 ;g (204 1)3 5)
N@ﬂw:n;kﬁﬁ n>3 1<k<n-—1 (6)

Theorem 2. Functions of the class F, satisfy the sharp inequality

n—k k
l=®le < Kin 2l 1215, (7)

and the smallest possible constant in this inequality is

1

32 & 1 :
Kia=[2Y — | >1,

b2 <ﬂ3£0(2£+1)3>

Kign=1 mn2>3 1<k<n. (8)

The fact that functions from the set F,, satisfy inequality (7) with some finite constant follows
from a result of A. N. Kolmogorov [7], for ||z(™|c < ||=(™]||y;. However, one cannot obtain the
smallest possible constant in (7) using this approach.

P roof of the both theorems will be done simultaneously following the scheme which was
developed by S. B. Stechkin [8] and later used by other authors (see, e. g., [1,4,5,9,10]). Consider

w(®) =sup{[=Wlc: z € Qn, |[x]lc <8}, §>0. (9)
It follows from the homogenity of w(d) (see, e.g. [11, p. 116]) that

w(8) = K 6%, a:”;k, (10)

with K = w(1). This fact implies inequality (7), and the smallest possible constant in (7) is K =
Ky, = w(1). Using S. B. Stechkin’s method [8], one can show that e(N) > w(d) — N§ = Ké* — N§
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for each N > 0 and 6 > 0, that is, K < N6'~® 4 e(N)6~®. Minimizing the latter expression with
respect to 0 > 0, we obtain the inequality

K™ <n" (&)n_k (eiv))k. (11)

Consequently, an upper estimate for e(/V) (a concrete operator) gives an upper estimate for K, and
a lower estimate for K (a concrete function x € F),) gives a lower estimate for e(NV).

We start the concrete realization of this scheme by considering the case n = 2, k = 1. First we
obtain an upper bound for e(N) using a concrete operator. Let n be an odd 27-periodic function
which is defined on [0, 7] by the formula n(t) =t — %t2. We have

—i mE+ 1, =L (12)
— LR R e N Y ey

It is not difficult to see that the operator 7' = T 2 defined by the formula

(Th2)(t) = Dy (h)) — 2@t — 20+ D (h))}, (13)
where v = v(h) = = is a linear bounded operator in C' and
i) Z " iy = Nialh) (14)

= (t —n(t))t2. To determine its norm in the space C, we notice
> 0, and thus |(¢)| < 1. Furthermore, if ¢ € [0, 7], then ¢(t) = L.

™

Introduce the function ¢(t)
that t > n(t) >t — 2¢* for all ¢

Consequently,
1
lelle(—co00) = — (15)
Now let us prove that the representation
2'(t) — (T122)(t) = —iV(h)/62””<P(27T7V(h))dux(7) (16)

holds for functions z € Fy, where p = p; = 2’ is the measure from representation (1). First assume
that a function z and its derivative z” both belong to Lo. In this case, the function y = 2/ — Tz
belongs to L2 as well, and it is easy to see that the Fourier transform of the function y has the
form y(t) = —iv p(2nwtr) 2”(t). Taking the inverse Fourier transform, we obtain the expression

y(t) = 2'(t) — (Tx)(t) = —iV/(p(27TTI/) ;ﬁ(T) 2™ qr. (17)

which is representation (16) in this particular case.
Now let x be an arbitrary function from the class F5. Introduce the functions

Ct) =1+, &) =C((et), 2=z = (.

Obviously, z and z” belong to Lo, and 2” can be written as 2" = 29 + 21 + 29, where zg = 2"(,
z1 =22'Cl, zo = x¢!. By (17),

2'(0) = (T2)(0) = —iv(h) / wo(7) {z0(7) + 21(7) + 22(7) } dr, (18)
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with ¢o(7) = p(2mv7). We will take the limit of this relation as e — 0. Obviously, Z'(0) = 2/(0),
and (Tz)(0) — (Tz)(0) as € — 0. Consider the integrals J;(g) = [ ¢o(7) Z;(7) dr constituting the
right-hand side of (18). The function ¢y belongs to Lo, thus usmg the Holder inequality and the
Parseval equality, we obtain

~ 1
[71(e)] < lleoll2 12112 = llpollz llz1ll2 < 2ol 12l IGEll2 = 2 lloll2 [12”llc ISl €2

We see that Ji(¢) — 0 as ¢ — 0. In a similar way one can show that Ja(¢) — 0 as ¢ — 0. Now
let us investigate the behaviour of Jy(g). The Fourier transform of the function zg = z”(. is the
convolution

alr) = [ & =) di)
It follows that

M@z/mm%mm:/é@/mw+ﬂwmw.

The family of the functions CNE is d-shaped, consequently, Jy(g) tends to [ ¢o(7)du(r) as e — 0.
Thus, the limit of (18) as ¢ — 0 is

2(0) = (T2)(0) = —iv / oo(r) dua(7), @€ Fy.

This is equivalent to the fact that representation (16) holds for each function x € Fb.
Using (16) and (15), one can estimate quantity (3) for operator (13) from above, namely,

h
u2(Ti2) s v(h)lelle = 5.
By (14), this yields
h
e12(N12(h)) < 5. (19)
Moreover, inequalities (11) and (19) give the estimate
32 1
K2<=2)y — 20
_7T3Z(2€+1)3 (20)
£=0
for the best constant in the inequality
1
Izl < K (lzllc [|="]lv)? (21)
which is a particular case of (7).
Now we will derive statements converse to (20) and (19). For, consider the function
1 [Tm—u
t) = t) == inut du. 22
x(t) = x1,2(t) 2/0 S sinut du (22)
Obviously, x is an odd entire function. Furthermore, since
s sin2 mu 1 —cos2mu
sin (2j + u = — = .
sin u 2sinw
7=0
we have .
I « 1 [T —
x(t) = 2/0 st sin ut du = Z @;(t 2/0 Zin; sinut cos 2mu du, (23)

7=0
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where -
p;(t) = / (m —u) sin (27 4+ 1)u sin ut du.
0
Each of the functions ¢; is entire and it is easy to check that

2
. s
0ij(2j +1) = T

1+ costm 1 1
() = - t#25+ 1. 24
#i(t) 2 {(2j+1—t)2 (2j+1+t)2}’ 72+ (24)
For a fixed ¢, the value of the last integral in (23) tends to zero as m — oo, therefore
(o9} o
14 costm 1 1
t) = ()= —->2" - . 25
x(®) J;O%() 2 ;{(2j+1—t)2 (2j+1+t)2} (25)

It follows from (24) that ¢;(t) > 0 for t > 0 and ¢;(2m + 1) = 0 for j # m. Hence, the function x
is non-negative on the half-line (0, c0), and

[\

X(2j+1):%, j=01,.... (26)
Using the well-known identity
oo
11 3 1
sin?mt 72 L (- k)2’

we obtain -

72 1+ costm 1 1

— = : 27

1 > jzg){(zjﬂt)ﬁ(zjﬂﬂy} (27)

It follows from relations (25)—(27) that

2

0<x(B) T 120,
. L
IXllo-o0,00) = X2 +1) = 7= 7 20. (28)
Further on, using (25) we find that
1 [™u(r —u) > 1
"0)== | —du=4Y ——. 2
x(0) 2 /0 sinu " Z (2¢0+1)3 (29)

=0
Now let us calculate the integral
g1 / T o)
2 Jo sin u

Taking m — u as a new variable, we obtain

1 T, 2 _ _ 2 ™ — > 1
J:/ u*(m u)‘—l—(w u)udu:ﬂ/ u(7r u)du:27rz .
4 /o sinu 4 Jo sinu — (20+1)3

—Uu

Denote by y the odd function which vanishes for v > 7 and is y(u) = 7% for u € (0, 7). The
inverse Fourier transform z = ¢ of this function

A
z(t) =9(t) = ;/0 Zinvj sin 27tu du
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is equal to ix(2nt). Therefore,

7.‘_2
lelle ==,

(e e}
1
/ o :
2'(0) = i2mx'(0) = 8mi ;:0 201

171 = o [Ty = (2° 3.

=0

Thus, the function z belongs to F5 and provides the following estimate from below for the best
constant K in (21):
s FOP 2SS

T elle el 7 g e+ D

(30)

Inequalities (30), (20), (19), (11) imply the relations

32 1 h
2 —
127 5 2 i 1) e12(N12(h)) = 3.

This proves Theorems 1 and 2 forn =2, k= 1.
In the author’s paper [3], the solution of problem (2) for the class

Qu(S) =f{z € S:[lz™|1 <1} € Qu

was, in fact, given, and the value of the best constant K} ,(S) in inequality (7) on the set of
functions x € S was determined for n > 3, 1 < k < n — 1. One could use these results to prove
Theorems 1 and 2 for n > 3. However, we give here a different proof, or, more exactly, a sketch of
the proof.

Now assume that n > 3, k = 1. Let n be a 2m-periodic odd function which is defined on [0, 7]

by the formulae
(t)=t ! 1 t", te [O }
n n T ’ ’ 2 ’

n(t)=n(r—1t), te [g,w] .

Using the function n, we define a function ¢ on the real line by ¢(t) = (t —n(t)) t~"™. The functions
n and ¢ satisfy the following properties (see [3, proof of Theorem 4.1]):

n(t)=> cesin(20+1)t, (1)’ >0, £>0,
£=0
> s mn—1
Inlle =31 =n(3)=5——

lelle = (2) = 2 (2)
Plic = 5) " n \ 1 .
Now take h > 0, put v = v(h) = %h and define an operator T' = T7 , in C' by the formula

th) S e {arlt + 20+ 1)) — a(t — (20 + D)}, (31)
/=0

(Ta)(6) = 3
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It is clear that 717, is a linear bounded operator in C' and

unlloc = 23 el = "2 (32)
1,n C’—>C—V Cr| = nh .
=0
As in the proof for n = 2 above, one can show that the representation
2 (t) — (T ) (t) = (—iv)" ! /e%t” o(2mvT) dz(™ (1) (33)
holds for all functions x € Fj,. It follows from this representation that
1 hnfl
wia(Tin) <" igllo =~ (31

In the case n = 3, k = 2, denote by 7 the even 27-periodic function, defined on [0, 7] by the
formulae

4
n) = -t telo.Z],

3T
T
n(t) =n(r—1), te [5,77] :
We have E
S 1 - (~1)f 2
n(t) :;c(g(l—cos%t), C0=—7

It follows that

o0 o0
™ Y
2 E cp =2 E C2j+1 = Inllc =n (5) = 12
(=1 =0

Moreover, it is easy to see that the function ¢(t) = (#* — n(t))t =3 satisfies the property

lele = (%) =+
Pllc = 2) " 35

Now we define a bounded linear operator 75 3 in the space C' by the formula

1 oo
(Tr3z)(t) = ~5,2 ce{lx(t + 20v) — 2x(t) + z(t — 20v)}. (35)
(=1
For this operator we have
2 h~2
1T23llc—c < e ; |cel = 5 (36)

For each x € F3 we have the representation

2" (t) — (Ths)(t) = —V/eQﬂtTi o(2mTV) d;ﬁ(r); (37)

it follows from this representation that

2h

uz23(T23) < vl¢llc = 3 (38)

Now we define an operator T} ,, for arbitrary n > 3, 1 < k < n by the formula

Tk,n = Tm,n—k+m Tk—m,m; O<m<k<n. (39)



On the best approximation of the differentiation operator 27

For example, we can take m = k — 1, then (39) takes the form
Tk,n = Tk—l,n—l Tl,na (40)

and if the operator T}, is defined for all 3 <n <n,1 <k <n—1 (and n =n, k = 1), then using
(40) we define T}, for n =n, k=2,...,7 — 1. Let us check that

n—k

[ Thnll < h*, (41)

k. _
uk,n(Tk,n) < E h" k (42)

foralln >3,1<k<mn. For k=1,n >3 and for k = 2, n = 3 these relations coincide with (38),
(36), (34), (32). For the other values of the parameters k, n we have

[ Thenll < 1T n kel 1T ml]- (43)

For z € F,, write 2% — T}, nv in the form

(k) dm aE=m (h—m) (h—m)
s = Tk,nx = T - Tm,n—k-{—mq: + Tm,n—k+m (ZE - Tk—m,nl')-
This representation gives the estimate
Uk,n(Tk,n) < Um,k—n+m(Tm,n—k+m) + HTm,n—k—I—m” uk—m,n(Tk—m,n)‘ (44)

Inequalities (41) and (42) follow from estimates (43) and (44) by induction.
Statements (41), (42) imply the following estimate from above for quantity (2) for n > 3,
1<k<n:

—k k
Chn <” - h_k> <= Ak h>o. (45)

Inequality (11) gives the estimate from above
K, <1 (46)

for the best constant in inequality (7).
On the other hand, the function (¢) = sint belongs to F,, for each n, and

lllc = 1Pl = [¥™ly = 1.

This function provides estimates that are converse to (45), (46). Thus, equalities (4), (8) are valid
for all n > 3, 1 < k < n. This completes the proofs of Theorems 1, 2. O

Remark. We also have proved that

[Tk nllc—c = Nin(h),

eton (N (1)) = (T (1) = = 7t

for all n > 2,1 < k < mn, i. e., the operators T} ,, are extremal operators in problem (2). Moreover,
the sine function for n > 3, 1 < k < n and the function x defined by (22) for n = 2, k = 1 are
extremal in inequality (7), i. e., inequality (7) turns into an equality for them.

Problem (2) is connected to one further similar problem. Denote by W) the set of functions
& € L, N Ly such that their derivatives 2" are locally absolutely continuous, and z(™ € Lo.
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Consider the subclass Q7 = {z € W7 : |||y < 1} in the set W7. For a linear bounded operator
T in L, consider the quantity

U(T) = sup {[|a® — Tz, : z € Q}.
We are interested in the quantity
Epn(N)y =inf{U(T):T € L,(N)} (47)

of the best approximation of the differentiation operator of order k in the space Lo on the class
Q;, by the set L£,(N) of linear bounded operators in L, with the norm ||T|| = ||T||.,—L, < N; for
r = oo we consider the space C' of continuous functions in the place of L.

For r =2 and alln > 2,1 < k < n— 1, problem (47) was solved by Yu. N. Subbotin and
L. V. Taikov [9]; in particular, they gave an extremal operator T,? ,, Which provides the lower bound
in (47). The author’s paper [3] gives a solution of problem (47) for1 <r <ooandn > 3
(1 <k <n). Namely, it is shown that

B <” —k h"") _ Bk s, (48)
n r n

and an extremal operator is the one defined by formulae (31), (35), (40); this operator differs from
the operator Tp, from [9] and does not depend on r. According to a result from [9] for r = 2,
formula (48) is also valid for n = 2, k = 1. In what follows we will show that, in contrast to the
case when n > 3, the quantity Ej 2(N),, in general, depends on r, namely, Ej 2(N)o > E12(N)a2.
We will see that e12(IN) = E12(/N)x and extremal operators in these problems coincide, so that
problem (2) and problem (47) for » = oo coincide for all n > 2, 1 < k < n — 1. The reason for
this behaviour has been explained in the author’s papers [2,3]; it is, in particular, connected to the
fact that, in (47), it is enough to consider only operators T € L,.(N) which are shift-invariant. The
following statement holds.

Theorem 3. Ifn=2, k=1, r = oo, then for each h > 0 we have
h 16 v~ 1
Ei2(Ni2(h)oo ==, Nigh)=— ) ——= 49
12(N12(h))oc = 5, N12(h) = 5 I CTES Ve (49)
and the operator T o defined in (13) is extremal.
P roof Representation (17) holds for functions @ € W5°. Therefore,
2" = Tiozll2 = v llvo 2”2 < wllelle 2"l = v lielle 2”2,

and, consequently, U(T12) < %. Moreover, ||T1 2| c—c = Ni2(h). Hence,

h
E12(N12(h))oo < 3 (50)
It follows from Theorem 3.1 in [3] that (cf. (11))
2(N E1a(N)w)? = K(S), (51)

where K (S) is the best constant in inequality (21) on the set S. Let us prove that K(S) = K 2.
Consider the family of the functions Y. () = e =" x(t), where the function y is defined by (22). It
is easy to see that e € S, x2(0) = x/(0), and ||xcllc — IIxlles X7l — [Ix”|l1 as e — 0. From these
facts we conclude that K(S) > K2, and, consequently, K(S) = K; 2. This yields an inequality
converse to (50) and thus proves Theorem 3. O

Remark. The operator T 5 is also extremal in problem (47) for r = 2, but

1
T2l Ly —L, = o5 < 1T 2llc—c- (52)

One can conjecture that the operator T o is extremal for all r (1 <r < o0).
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