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Abstract: In this paper, we introduce the notion of nearly topological linear spaces and use it to formulate
an alternative definition of the Hahn–Banach separation theorem. We also give an example of a topological
linear space to which the result is not valid. It is shown that R with its ordinary topology is not a nearly
topological linear space.
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1. Introduction

In this paper, all linear spaces are over the field K ∈ {R, C} unless clear from the context.
When we treat K as a topological space, we mean K is equipped with its standard topology. For
any undefined concepts and terminologies, refer to [9].

Topological linear spaces are intensively studied since they are useful for instance in functional
analysis, fixed point theory, equilibrium problems and many others. In functional analysis and
fixed point theory, there are many popular theorems which are proven for topological linear spaces
like Schauder-Tychonoff fixed point theorem, Hahn Banach separation theorem, etc (for example,
see [1, 9, 10]). This paper acquires its inspiration from the following result which is very popular in
Functional Analysis and other related branches of Science (see [1, 5, 9, 10], for example) and some
papers of its applications (see [2–5, 8], for example):

Theorem 1 (Hahn-Banach Separation Theorem). Let a, b be disjoint, non-empty convex sets
in a topological linear space L.

(a) If a is open, then there exist a continuous linear functional ϕ : L → K and λ ∈ R such that
Reϕ(x) < λ ≤ Reϕ(y), for all x ∈ a, y ∈ b.

(b) If a is compact, b is closed, and L is locally convex, then there exist a continuous linear
functional ϕ : L → K and α, β ∈ R such that Reϕ(x) < α < β < Reϕ(y), for all x ∈ a,
y ∈ b.

A natural question to ask is: Is Theorem 1 still valid if L is not a topological linear space?
We exhibit that there is a partial answer to this question for a different class of topological linear
spaces.

Definition 1. Let L be a linear space and a a subset of L. Then a is called

(1) convex if ∀x, y ∈ a, and ∀α, β ≥ 0 such that α+ β = 1, αx+ βy ∈ a;
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(2) absorbing if for each x ∈ L, ∃ r > 0 such that ∀λ ∈ K with |λ| ≤ r, we have λx ∈ a;

(3) balanced if ∀x ∈ a, and ∀λ ∈ K with |λ| ≤ 1, we have λx ∈ a.

Definition 2. Let L be a linear space and c be a non-empty subset of L which is absorbing.
The Minkowski (or gauge) functional of c is a function, p : L→ R, defined as

p(x) = inf{λ > 0: x ∈ λc}.

Lemma 1 [9, Theorem 1.35]. Suppose c is a convex absorbing set in a vector space L. Then

(1) p(x+ y) ≤ p(x) + p(y);

(2) p(λx) = λp(x) if λ ≥ 0;

(3) p is a semi-norm if c is balanced.

A subset a of a topological space X is called α-open [7] if a ⊆ Int (Cl (Int (a))). The complement
of an α-open set is called α-closed set. The class of α-open sets of a given topological space X
forms a topology on X and it is denoted by ℑα. In the following, for given a topological space X we
write the corresponding topological space (X, ℑα) by Xα. A subset a of X is called α-compact [6]
if every cover of a by α-open sets of X has a finite subcover.

Note that every open set in a topological space is α-open, every closed set in a topological space
is α-closed, and every α-compact set in a topological space is compact, but the converse of these
implications is not true in general.

Example 1. Consider the topological space (X, ℑ) where X = R, and ℑ is the usual topology
on R. Let

a =
{

x ∈ R : −1 < x < 1, x 6= 1

n
, n ∈ N

}

,

where N denotes the set of positive integers. Then a is α-open set in R which is not open. Further
let

b =
{ 1

n
: n ∈ N

}

,

then b is not closed set in R but it is α-closed set.

2. The main results

Definition 3. We call a pair (L, ℑ) (or simply, L if no confusion arises) nearly topological
linear space if :

• L is a linear space;

• ℑ is a topology on L, with

(1) for each α-open set W of L containing the vector sum x+ y with x, y ∈ L, there exist
α-open sets U and V of L containing x and y, respectively such that U + V ⊆W , and

(2) for each α-open set W of L containing the scalar product λx with x ∈ L and λ ∈ K,
there exist an open set U of K containing λ and an α-open set V of L containing x
such that UV ⊆W .
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From this definition, we have immediately:

Remark 1. A nearly topological linear space is not necessarily a topological linear space.
Conversely, R with its usual topology is a topological linear space which is not a nearly topological
linear space because for α-open set

W =
{

x ∈ R : −1 < x < 1, x 6= 1

n
, x 6= − 1

m
, m,n ∈ N

}

which visibly contains 0 = 0.0, there do not exist any open set U in K containing 0 and α-open set
V in L containing 0 such that UV ⊆W .

For a nearly topological linear space L, consider the mappings,

σx : L
α → Lα defined as σx(y) = x+ y,

πλ : L
α → Lα defined as πλ(x) = λx; x, y ∈ L, λ ∈ K.

Theorem 2. For a nearly topological linear space L, σx and πλ are continuous.

P r o o f. Follows from Definition 3. �

For a nearly topological linear space L, we denote by Z0 the class of α-open sets of L containing
the zero vector of L.

Theorem 3. In a nearly topological linear space L, the following statements are valid :

(a) Every c ∈ Z0 is absorbing and balanced.

(b) If in addition, c ∈ Z0 is convex, then the Minkowski functional p of c is a semi-norm and the
set

{x ∈ L : p(x) < 1} = c.

P r o o f. (a) Since 0 = 0.0, there exist an open set u in K containing 0, and v ∈ Z0 such that
uv ⊆ c. Then there exist a real ǫ > 0 and an open disk Dǫ with center 0 and radius ǫ such that
Dǫv ⊆ c. By Theorem 2, π1/λ is continuous, so the set a = Dǫv ∈ Z0. Clearly, a is balanced. Next,
by Definition 3, we have that for any element x ∈ L, there exists an open set u in K containing 0
s.t. ux ⊆ c. Then there exist a real r > 0 and an open disk Dr with center 0 and radius r such that
Drx ⊆ c, showing that c is absorbing.

(b) Follows from Lemma 1. �

Theorem 4. Suppose a, b are disjoint sets in a nearly topological linear space L. If a is an
α-compact set in L, b is an α-closed set in L, then there exists a symmetric set u ∈ Z0 such that
(a+ u) ∩ (b + u) = ∅.

P r o o f. Let x ∈ a be an element. By Definition 3, there are u1, u2 ∈ Z0 such that

(x+ u1 + u2) ∩ b = ∅.

Consider,
u = u1 ∩ u2 ∩ (−u1) ∩ (−u2).

Since πλ is continuous, u ∈ Z0. Consequently, there is a symmetric set ux ∈ Z0 such that

(x+ ux + ux + ux) ∩ b = ∅ ⇒ (x+ ux + ux) ∩ (b+ ux) = ∅.
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In a similar vein, we obtain a family

℧ = {x+ ux : x ∈ a}

of sets. By Theorem 2, x+ ux is α-open set in L. Therefore, for some positive integer n, we have

a ⊆
n
⋃

i=1

(xi + uxi
), xi ∈ a for all i = 1, 2, . . . , n.

Let

ν =

n
⋂

i=1

uxi
.

Then ν ∈ Z0, ν = −ν, and
(a+ ν) ∩ (b + ν) = ∅

also. �

Theorem 5. Suppose a, b are disjoint, non-empty convex sets in a nearly topological linear
space L.

(a) If a is α-open, then there is a linear continuous map ϕ : Lα → K such that Reϕ(x) < Reϕ(y),
for every x ∈ a and for every y ∈ b.

(b) If a is α-compact, b is α-closed and for every c ∈ Z0, there exists a convex set c0 ∈ Z0 such
that c0 ⊆ c, then there exist a linear continuous map ϕ : Lα → K, λ ∈ R and an ǫ > 0 such
that Reϕ(x) < λ < λ+ ǫ < Reϕ(y), for every x ∈ a and for every y ∈ b.

P r o o f. (a) We have two cases.
Case I: K = R. Fix x0 ∈ a, y0 ∈ b. Let

c = a− b+ y0 − x0.

Then c is convex set in L, with c ∈ Z0. Let p be the Minkowski functional of c. By Theorem 3, p
is semi-norm on L. Since

a ∩ b = ∅, y0 − x0 = w /∈ c

and so p(w) ≥ 1.
Consider the linear subspace M = Rw of L and define ψ : M → R by ψ(tw) = t. Evidently, ψ

is a linear functional on M s.t.
ψ(y) ≤ p(y), ∀y ∈M.

By Hahn–Banach extension theorem, there is a linear functional ϕ on L s.t.

ϕ|M = ψ and ϕ(y) ≤ p(y), ∀y ∈ L.

Now, for sufficiently small ǫ > 0, take u = (ǫc)∩ (−ǫc). By Theorem 2, u ∈ Z0, and for every x ∈ u,
±x ∈ ǫc, giving us ǫ−1(±x) ∈ c. By Theorem 3, p(±x) < ǫ. That is, |ϕ(x)| < ǫ for all x ∈ u.

Next, since for every x ∈ a, y ∈ b, ϕ(x− y) < 0 so we have

ϕ(x) ≤ λ ≤ ϕ(y), forall x ∈ a, y ∈ b,

where λ = sup{ϕ(x) : x ∈ a}.
Suppose there exists some a0 ∈ a s.t. ϕ(a0) = λ. By the continuity of the map

R ∋ α 7→ a0 + αw ∈ Lα



An Analogy of Hahn-Banach Separation Theorem 85

we have a real number ǫ > 0 such that

a0 + αw ∈ a, for each α ∈ R satisfying |α| ≤ ǫ.

In particular, a0 + ǫw ∈ a, showing that λ+ ǫ ≤ λ, which is impossible.

Case II: K = C. The above case gives us a linear continuous function ϕ : Lα → R with the
requisite properties. Then considering the function ψ(ς) = ϕ(ς) − iϕ(iς) is the required function,
where i =

√
−1.

(b) By Theorem 4, there exists a set u ∈ Z0 such that (a+ u) ∩ b = ∅. Then part (a) indicates
that there are a continuous linear function ϕ : Lα → K, and λ ∈ R such that

Reϕ(x) < λ ≤ Reϕ(y), for every x ∈ a+ u, y ∈ b.

Since a is compact proper subset of a+ u ⊆ Lα, Reϕ(a) is compact proper subset of Reϕ(a + u).
Thus, there exists λ > 0 such that

Reϕ(x) < λ < λ+ ǫ < Reϕ(y), for every x ∈ a and for every y ∈ b.

Whence the proof easily follows. �

Corollary 1. Suppose b is a convex, balanced, α-closed set in a nearly topological linear
space L. If x0 ∈ L, but x0 /∈ b and for every v ∈ Z0, there exists a convex set u ∈ Z0 such
that v ⊆ u, then there is a continuous linear functional ϕ : Lα → K such that

|ϕ(x)| ≤ 1, for all x ∈ b, and |ϕ(x0)| > 1.

3. Conclusion

In this paper, we introduced the notion of nearly topological linear spaces and formulated an
alternative definition of Hahn–Banach separation theorem by using the notion of α-open sets in
topological spaces in the sense of Njastad. It is shown that R with its ordinary topology is not a
nearly topological linear space.

If we endow C, the real linear space of complex numbers with the topology generated by the
family of sets of the form

Dr,ǫ = {x+ iy : x, y ∈ R, r − ǫ < x < r + ǫ, i2 = −1}

with r ∈ R and ǫ > 0, then C is a nearly topological linear space.

Besides checking the validity of results of topological linear spaces in the field of nearly topolog-
ical linear spaces, it will be a good contribution finding some more examples of nearly topological
linear spaces which satisfy some separation axioms and Theorem 5.
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