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Abstract: The paper presents new solutions to two classical problems of approximation theory. The first
problem is to find the polynomial that deviates least from zero on an ellipse. The second one is to find the
exact upper bound of the uniform norm on an ellipse with foci ±1 of the derivative of an algebraic polynomial
with real coefficients normalized on the segment [−1, 1].
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Introduction

Denote by P1
n the set of algebraic polynomials of degree n with the unit leading coefficient:

p(z) = zn + cn−1z
n−1 + . . .+ c0, ck ∈ C.

Consider the ellipse E = {z = a cos t+ ib sin t | t ∈ [0, 2π]; a > b > 0} centered at the origin. Let
‖p‖E = max

z∈E
|p(z)|. Recall that a polynomial p∗n ∈ P1

n is called a polynomial least deviating from

zero on E (in C(E)) if

min
p∈P1

n

‖p‖E = ‖p∗n‖E .

V.I. Smirnov and N.A. Lebedev showed in 1964 [1, p. 331–333] that the normalized Chebyshev
polynomial of the first kind Tn is the polynomial least deviating from zero on an ellipse with foci ±1.
Smirnov and Lebedev considered the ellipse as an image of a circle under the Joukowsky transform

f(ω) = (ω + 1/ω) /2.

Thus, instead of polynomials, they studied functions of the following form defined on circles:

qn(ω) = Rn(ω) +
√

ω2 − 1 ·Qn−1(ω),

where Rn(ω) and Qn−1(ω) are polynomials of degree at most n and n − 1, respectively. We will
give another solution of this problem. Our proof is based on Kolmogorov’s theorem about the best
uniform approximation of arbitrary continuous function by generalized polynomials.

1The work was performed as a part of research conducted in the Ural Mathematical Center.
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The second problem considered in the paper is related to inequalities for derivatives of algebraic
polynomials. Let

E1 = {z = a cos t+ bi sin t | t ∈ [0, 2π]; a2 − b2 = 1}

be an ellipse with foci ±1, and let P
[−1,1]
n be the set of algebraic polynomials of degree n with

real coefficients and the unit uniform norm on [−1, 1]. In 1986, J.H.B. Kemperman showed [3,

Theorem 1.2] that, for any pn ∈ P
[−1,1]
n ,

‖p′n‖E1
≤

n

2b

(
(a+ b)n − (a− b)n

)
= ‖T ′

n‖E1
.

We obtained the proof of this fact independently of Kemperman. Our idea and Kemperman’s one
are similar, but our proof is shorter and easier to understand, as we consider objects in the problem
from a slightly different point of view.

1. Polynomial that deviates least from zero on an ellipse

Let us give a solution to the problem about a polynomial p∗n(z) deviating least from zero on E.
We will obtain an explicit formula for p∗n(z), a value of its norm ‖p∗n‖E , and a recurrence relation
between p∗n+1(z), p

∗
n(z), and p∗n−1(z).

Lemma 1. For any positive integer n,

(a cos t+ ib sin t)n = An cos(nt) + iBn sin(nt) +
n−1∑

k=0

αk cos(kt) + iβk sin(kt), (1.1)

where An, Bn, αk, βk ∈ R and

An =
aAn−1 + bBn−1

2
=

(a+ b)n + (a− b)n

2n
, Bn =

bAn−1 + aBn−1

2
=

(a+ b)n − (a− b)n

2n
.

P r o o f. The proof of (1.1) is by induction on n. It is clear that the statement holds for n = 1.
Assume that the statement holds for n− 1, and prove it for n. We have

(a cos t+ ib sin t)n = (a cos t+ ib sin t) ·
(
An−1 cos

(
(n − 1)t

)
+ iBn−1 sin

(
(n− 1)t

)
+

+
n−2∑

k=0

α̃k cos(kt) + iβ̃k sin(kt)
)

with real An−1, Bn−1, α̃k, and β̃k. The imaginary unit will only appear in the products of the form

i sin(ℓt) cos(kt) = i
(
sin

(
(k + ℓ)t

)
− sin

(
(k − ℓ)t

))
/2.

Therefore, all the coefficients An, Bn, αk, and βk in (1.1) are real.

The proof of the recurrence relations for An and Bn is straightforward. Indeed, by removing
parentheses in the product, we obtain

(a cos t+ ib sin t) ·
(
An−1 cos

(
(n− 1)t

)
+ iBn−1 sin

(
(n− 1)t

))
=

=
aAn−1 + bBn−1

2
cos(nt) +

bAn−1 + aBn−1

2
i sin(nt) + . . .
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Let us show that

An −Bn =
(a− b)n

2n−1
, An +Bn =

(a+ b)n

2n−1
, n ∈ N. (1.2)

These equations obviously imply explicit formulas for An and Bn. Equations (1.2) for n = 1 are
obvious. We now proceed by induction. Assume that the statement holds for n−1, and prove that
it holds for n. We have

An +Bn =
aAn−1 + bBn−1

2
+

bAn−1 + aBn−1

2
=

=
1

2

(
(a+ b)An−1 + (a+ b)Bn−1

)
=

(a+ b)

2
·
(a+ b)n−1

2n−2
=

(a+ b)n

2n−1
.

Similarly, we obtain the formula for An −Bn. �

Corollary 1. For any p ∈ P1
n(C), its restriction to the ellipse E is represented as

p(z) = An cos(nt) + iBn sin(nt) +

n−1∑

k=0

αk cos(kt) + βk sin(kt),

where αk, βk ∈ C, An, Bn ∈ R and An ≥ Bn.

We will not change the meaning of symbols An and Bn.

Lemma 2. Let ϕ =
{
1, (a cos t+ ib sin t), . . . , (a cos t+ ib sin t)n−1

}
, and let Φn−1 be the set of

generalized polynomials from ϕ with complex coefficients. Then, for f(t) = An cos(nt) + iBn sin(nt),

inf
p∈Φn−1

‖f − p‖C[0,2π] = ‖f‖C[0,2π] = An;

i.e., p(t) ≡ 0 is the best uniform approximation for f by generalized polynomials from ϕ.

P r o o f. Let ε =
{
t ∈ [0, 2π] : |f(t)| = ‖f‖C[0,2π] = An

}
. Since the set of values of f is the

ellipse with the major horizontal semiaxis of length An and the vertical semiaxis of length Bn, we
have

ε =
{
tk = πk/n, k = 0, . . . , 2n

}
.

By Kolmogorov’s theorem [2, Theorem 1; 8, p. 47, Theorem 1], to prove the lemma it suffices to
show that

min
tk

ℜ{p(tk)f(tk)} ≤ 0 (1.3)

for any p ∈ Φn−1. Let us substitute f(tk) into (1.3):

ℜ{p(tk)f(tk)} = Anℜ{(−1)kp(tk)}, k = 0, . . . , 2n.

Note that, by the definition of ϕ, it follows that p(t) is a trigonometric polynomial of degree n− 1.
If p(tk) vanishes at least at one point tk, then inequality (1.3) holds.

Assume that
min
tk

{
(−1)kp(tk)

}
> 0, k = 0, . . . , 2n.

From our assumption, it follows that p(t) takes values of different signs at 2n+ 1 points on [0, 2π].
Since p(t) is a continuous function, it has at least 2n zeros on [0, 2π]. But this is impossible, as any
trigonometric polynomial of degree n− 1 has at most 2(n− 1) zeros on [0, 2π). Therefore,

min
tk

{
(−1)kp(tk)

}
≤ 0, k = 0, . . . , 2n.

The statement is proved. �
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Theorem 1. Consider the ellipse E =
{
z = a cos t + ib sin t, t ∈ [0, 2π]

}
, a > b > 0. The

following polynomial deviates least from zero on E:

p∗n(z) =
1

2n−1

[n/2]∑

k=0

C2k
n zn−2k(z2 − c2)k =

1

2n

(
(z +

√
z2 − c2)n + (z −

√
z2 − c2)n

)
,

where c2 = a2− b2. Moreover, ‖p∗n‖C(E) =
(a+ b)n + (a− b)n

2n
and the following recurrence relation

holds:

p∗n+1(z) = z p∗n(z) −
c2

4
p∗n−1(z).

P r o o f. Let us show that An cos(nt) + iBn sin(nt) is the restriction to E of an algebraic
polynomial from P1

n. Lemma 2 implies that this polynomial is a solution to the problem

An cos(nt) + iBn sin(nt) =
An

2

(
eint + e−int

)
+

iBn

2i

(
eint − e−int

)
=

=
An

2

[
(cos t+ i sin t)n + (cos t− i sin t)n

]
+

Bn

2

[
(cos t+ i sin t)n − (cos t− i sin t)n

]
=

=
(a+ b)n

2n
(cos t+ i sin t)n +

(a− b)n

2n
(cos t− i sin t)n =

=
1

2n

([
(a cos t+ bi sin t) + (b cos t+ ai sin t)

]n
+ [(a cos t+ bi sin t)− (b cos t+ ai sin t)]n

)
.

Since

z2 = a2 cos2 t+ 2abi cos t sin t− b2 sin2 t = b2 cos2 t+ 2abi sin t cos t− a2 sin2 t+ (a2 − b2),

we have

(b cos t+ ai sin t)2 = z2 − (a2 − b2). (1.4)

Hence,

An cos(nt) + iBn sin(nt) =

=
1

2n

{ n∑

k=0

Ck
nz

n−k(z2−(a2−b2))k/2 +
n∑

k=0

Ck
nz

n−k(−1)k(z2−(a2−b2))k/2
}

=

=
1

2n

∑

0≤k≤n, k/2∈Z

2Ck
nz

n−k(z2 − (a2 − b2))k/2 =
1

2n−1

∑

0≤k≤n, k/2∈Z

Ck
nz

n−k(z2 − (a2 − b2))k/2.

It is obvious that

‖p∗n‖C(E) = An =
(a+ b)n + (a− b)n

2n
.

Let us prove the recurrence relation. We have

(a cos t+ib sin t)
(
An cos(nt)+iBn sin(nt)

)
−
(a2−b2)

4

[
An−1 cos

(
(n−1)t

)
+iBn−1 sin

(
(n−1)t

)]
=

=
aAn + bBn

2
cos

(
(n+ 1)t

)
+

bAn + aBn

2
i sin

(
(n + 1)t

)
+

+

(
aAn−bBn

2
−
(a2−b2)An−1

4

)
cos

(
(n−1)t

)
+

(
aBn−bAn

2
−
(a2 − b2)Bn−1

4

)
i sin

(
(n−1)t

)
.
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It can be easily checked that the coefficients at cos
(
(n− 1)t

)
and sin

(
(n− 1)t

)
are equal to zero:

aAn − bBn

2
−

(a2 − b2)An−1

4
=

a(aAn−1 + bBn−1)− b(bAn−1 + aBn−1)−An−1(a
2 − b2)

4
= 0.

As above, the coefficient at sin((n− 1)t) is equal to zero. The recurrence relation is proved. �

Note that p∗n(z) = zn for a = b = 1 and p∗n(z) = Tn(z)/2
n−1 for a = 1 and b = 0. It corresponds

to well-known results for the unit circle and the interval [−1, 1].

2. Inequality for the derivative of an algebraic polynomial

with real coefficients on an ellipse

Let us give a solution to the problem of finding the best constant M in the inequality

‖p′n‖E1
≤ M, pn ∈ P [−1,1]

n .

Theorem 2. The following inequality holds for every polynomial pn ∈ P
[−1,1]
n :

‖p′n‖E1
≤

n

2b

[
(a+ b)n − (a− b)n

]
.

The Chebyshev polynomial of the first kind

Tn(z) =

[n/2]∑

k=0

C2k
n zn−2k(z2 − 1)k =

1

2

(
(z +

√
z2 − 1)n + (z −

√
z2 − 1)n

)

is extremal.

P r o o f. The proof will be divided into three steps.

(1) First, we will show that |p′(z)| ≤ ‖T ′
n‖ for every z ∈ E1 such that

|z| ≤
∣∣a cos(π/(2n)) + ib sin(π/(2n))

∣∣.

Consider the trigonometric polynomial τn(t) = pn(a cos t+ ib sin t). By the chain rule,

|τ ′n(t)| = = |p′n(z)| · | − a sin t+ ib cos t|, z = a cos t+ ib sin t.

By Bernstein’s inequality for trigonometric polynomials [7; 8, p. 216, Theorem 1] and (1.4),

|p′n(z)| =
|τ ′n(t)|

| − a sin t+ ib cos t|
≤

n‖pn‖E1

| − a sin t+ ib cos t|
≤

n‖pn‖E1

|1− z2|1/2
.

To estimate the numerator, we apply the well-known inequality [4, p. 240]

‖pn‖E1
≤

(a+ b)n + (a− b)n

2
, pn ∈ P [−1,1]

n .

Therefore,

|p′n(z)| ≤
n‖pn‖E1

| − a sin t+ ib cos t|
≤

n
(
(a+ b)n + (a− b)n

)

2| − a sin t+ ib cos t|
.
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The image of the Chebyshev polynomial of the first kind Tn(z) for z ∈ E1 is the ellipse

{
z =

(a+ b)n + (a− b)n

2
cos(nt) + i

(a+ b)n − (a− b)n

2
sin(nt) | t ∈ [0, 2π]

}
.

Hence,

|T ′
n(z)| =

n
∣∣−

(
(a+ b)n + (a− b)n

)
/2 · sin(nt) + i

(
(a+ b)n − (a− b)n

)
/2 · cos(nt)

∣∣
| − a sin t+ ib cos t|

. (2.5)

Let z∗ = a cos(π/(2n)) + ib sin(π/(2n)). Note that, if |z| = |a cos t+ ib sin t| ≤ |z∗|, then

|ia sin t+ b cos t| ≥
∣∣ia sin(π/(2n)) + b cos(π/(2n))

∣∣.

Therefore, for every z ∈ E1 such that |z| ≤ |z∗|, we have

|T ′
n(z

∗)| =
n
(
(a+ b)n + (a− b)n)

)

2
∣∣ia sin(π/(2n)) + b cos(π/(2n))

∣∣ ≥ |p′n(z)|.

Now it is clear that the following inequality holds for z such that |z| ≤ |z∗|:

|p′n(z)| ≤ ‖T ′
n‖E1

.

(2) Let us obtain the estimate for z ∈ E1 such that |z| > |z∗|. The idea of the proof of this
point belongs to Erdös [5, Theorem 7].

Since a2 ≥ 1, it is clear that

|z∗| =

√
a2 cos2

π

2n
+ b2 sin2

π

2n
≥ cos

π

2n
.

Further, note that cos(π/(2n)) is the largest zero of the Chebyshev polynomial of the first kind.

Let us write the interpolation formula for p′n(z) with roots of the Chebyshev polynomial as
interpolation nodes. Denote them by xk, k = 1, . . . , n. We have

|p′n(z)| =

∣∣∣∣
n∑

k=1

Tn(z)

(z − xk)

p′n(xk)

T ′
n(xk)

∣∣∣∣ =
∣∣∣∣Tn(z)

n∑

k=1

p′n(xk)

T ′
n(xk)

z − xk
|z − xk|2

∣∣∣∣.

Note that an angle between any two vectors z − xk is acute for |z| > cos(π/(2n)). Hence, if all
the numbers p′n(xk)/T

′
n(xk) are non-negative and have maximum moduli, then pn maximizes this

expression over the set P
[−1,1]
n .

By Bernstein’s inequality [7; 8, p. 216, Theorem 1],

|p′n(xk)| ≤ n/
√

1− x2k = |T ′
n(xk)|

for any pn ∈ P
[−1,1]
n . Therefore, the following estimate is true for pn ∈ P

[−1,1]
n and |z| > cos (π/(2n)):

|p′n(z)| ≤ |T ′
n(z)| ≤ ‖T ′

n‖E1
.

(3) It remains to prove that

‖T ′
n‖E1

=
n

2b
[(a+ b)n − (a− b)n].



Inequalities for Algebraic Polynomials on an Ellipse 93

It is known [6, p. 785, 22.12.2, 22.12.3] that

T ′
n(z) =





2n
n−2∑

k=1, k/2/∈Z

Tn−k(z) + n, (n− 1)/2 ∈ Z,

2n
n−1∑

k=1, k/2/∈Z

Tn−k(z), (n− 1)/2 /∈ Z.

Now it is clear that ‖T ′
n‖E1

= |T ′
n(a)|. Using (2.5), we see that

|T ′
n(a)| = ‖T ′

n‖E1
=

n

2b

[
(a+ b)n − (a− b)n

]
.

�

3. Remark

The inequality considered in Section 2 is related to Markov–Bernstein–type inequalities.
In 1889, A.A. Markov proved [9] that, if pn is a polynomial of degree n, then

‖p′n‖[−1,1] ≤ n2‖pn‖[−1,1].

Moreover, the Chebyshev polynomial of the first kind Tn is the unique extremal polynomial.
A natural generalization of this problem is to find the best constant M in the following inequal-

ity:
‖p′n‖E1

≤ M‖pn‖E1
.

It is easy to see that, if n = 1, then T1 is extremal, since it deviates least from zero on E1. It
can be shown that T2 is also extremal for n = 2. However, A.C. Schaeffer and G. Szegö showed
in 1941 [10, p. 223–225] that the solution to this problem for n ≥ 5 is not always provided by the
Chebyshev polynomial of the first kind. At present, this problem has not been solved.
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