
URAL MATHEMATICAL JOURNAL, Vol. 6, No. 2, 2020, pp. 44–62

DOI: 10.15826/umj.2020.2.005

ON ROUTING PROBLEM
WITH STARTING POINT OPTIMIZATION1

Alexander G. Chentsova),b),†, Pavel A. Chentsovb)

a)Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,

16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russia

b)Ural Federal University,
19 Mira Str., Ekaterinburg, 620002, Russia

†chentsov@imm.uran.ru

Abstract: One problem focused on engineering applications is considered. It is assumed that sequential
visits to megacities have been implemented. After all visits have been made, it is required to return to the
starting point (a more complex dependence on the starting point is also considered). But the last requirement
is not strict: some weakening of the return condition is acceptable. Under these assumptions, it is required to
optimize the choice of starting point, route, and specific trajectory. The well-known dynamic programming (DP)
is used for the solution. But when using DP, significant difficulties arise associated with the dependence of the
terminal component of the criterion on the starting point. Starting point enumeration is required. We consider
the possibility of reducing the enumeration associated with applied variants of universal (relative to the starting
point) dynamic programming. Of course, this approach requires some transformation of the problem.

Keywords: Dynamic programming, Precedence conditions, Route.

Introduction

This study addresses the routing problem with precedence conditions and complicated cost
functions. Besides, it is required to implement a return to the neighborhood of the starting point
(more general variants are also considered). This condition may be related to the peculiarities of
applied problems. We keep in mind the cutting of sheets and dismantling in the nuclear power
industry. Of course, the well-known Traveling Salesman Problem (TSP) is a natural prototype for
this problem. But in our setting, many new difficulties arise. We will mention just a few related
to the TSP investigations; see [1, 7, 9–12, 16–18].

In engineering applications, the problem of visiting megacities often arises. This is due to the
possible multivariance of the permutations. So, in the control problem when cutting sheets on CNC
machines, these megacities are realized when digitizing the contours of parts; this discretization
sampling is required for computer applications. Now let us note the precedence conditions. In
addition, in control problems when cutting a sheet, these conditions arise, in particular, for the
following reasons: for each part, cutting the inner contours must precede the cutting of the outer
contour. Of course, there are other specific reasons for using precedence conditions. Among other
restrictions, we note the requirements for thermal conductivity. It is useful to note that these
requirements are dynamic in nature: they arise depending on the tasks being performed.

We emphasize the importance of starting point optimization. When dismantling radioactive
elements, at a step of moving from the starting point, the performer is under the influence of all

1This work was supported by the Russian Foundation for Basic Research (projects No. 20-08-00873
(Sections 1–4) and No. 18-07-00637 (Sections 5–7)).

https://doi.org/10.15826/umj.2020.2.005
mailto:chentsov@imm.uran.ru

On Routing Problem with Starting Point Optimization 45

radioactive elements to be dismantled. So this step is very important. Therefore, a rational choice
of starting point is important. The requirement to return to a neighborhood of the starting point
may be related to reasons for sufficient proximity to the transport tool at the starting point. So,
the constraints used arise from the needs of actual applied problems.

Of course, without taking into account the above restrictions, a very difficult extremal problem
arises. This problem requires serious formalization and the development of theoretical methods.
Therefore, this paper provides a detailed exposition of general mathematical concepts. Besides, we
use fairly complex constructions of admissible solutions with a choice of basic components: starting
point, route, and trajectory. This hierarchical construction of the solution is important.

We use dynamic programming (DP) as the main solution method. But, in our complete prob-
lem, the necessity of enumeration of starting points arises. More precisely, its own DP procedure is
required for every starting point (in fact, this procedure is attached to the starting point). Appar-
ently, the enumeration of starting points when employing DP is unavoidable. However, we can try
to reduce this enumeration. For this, we use auxiliary DP procedures that are universal relative to
the starting point; more precisely, we follow [6]. We construct minorant and majorant procedures
using DP. In terms of these procedures realized more simply, we aim at the required reduction of
the enumeration. Such a goal is attained by weakening the closed routing problem (but, we use
our own method and in more general cases). In this case, we obtain a simpler solution to our
complete problem. Also, we use an approach of [6] under more general conditions on movements
when visiting megacities. This generalization is related to applied problems (for example, such a
construction is required in sheet cutting problems).

1. General notions and designations

We use the standard set-theoretical notation (quantifiers and logical connectives), ∅ stands for

the empty set and
△
= for equality by definition. A family is a set whose elements are also sets. For

any objects x and y, we denote by {x; y} an unordered pair of x and y: x ∈ {x; y}, y ∈ {x; y}, and

(z = x) ∨ (z = y) for every z ∈ {x; y}. If s is an object, then {s}
△
= {s; s} is a singleton containing

s : s ∈ {s}. Also, sets are objects. For any objects x and y, the family (x, y)
△
= {{x}; {x; y}} is

the ordered pair (see [14, Ch. II, Sect. 2]) with the first element x and the second element y. If h
is an ordered pair, then pr1(h) and pr2(h) are the first and the second elements of h, respectively.

If a, b, and c are objects, then (a,b, c)
△
= ((a,b), c) (see [8, Ch. 1]). If A, B, and C are sets, then

A×B×C
△
= (A×B)×C (see [8, Ch. 1]). For a set H, we denote by P(H) and P ′(H) the families

of all subsets and all nonempty subsets of H, repectively; thus, P ′(H) = P(H) \ {∅}. Denote by
Fin(H) the family of all finite nonempty subsets of the set H, Fin(H) ⊂ P ′(H). If H is a finite set,
then Fin(H) = P ′(H).

If A, B, C, and D are nonempty sets, and g is a mapping from A × B × C to D, then
(x, y) ∈ A × B × C for x ∈ A × B and y ∈ C, and the value g(x, y) ∈ D is well defined; we also
write this value as g(x1, x2, y), where x1 = pr1(x) ∈ A and x2 = pr2(x) ∈ B.

As usual, R denotes the real line,

R+
△
= { ξ ∈ R|0 ≤ ξ}, N

△
= {1; 2; . . .}, N0

△
= {0} ∪N = {0; 1; 2; . . .} ∈ P ′(R+);

p, q
△
= { k ∈ N0|(p ≤ k)&(k ≤ q)} ∀p ∈ N0 ∀q ∈ N0.

Of course, 1, 0 = ∅ and 1, s = {k ∈ N|k ≤ s} for s ∈ N. For a nonempty finite set K, denote by

|K| ∈ N the cardinality of K and by (bi)[K] the set of all bijections from 1, |K| onto K. Let |∅|
△
= 0.

For a nonempty set S, denote by R+[S] the set of all nonnegative real-valued functions on S.

46 Alexander G. Chentsov and Pavel A. Chentsov

2. The problem setting

Fix a nonempty set X and a set X0 ∈ Fin(X). We consider X as a comprehending set and X0

as the set of all possible starting points. Let N ∈ N, N ≥ 2. Let

M1 ∈ Fin(X), . . . , MN ∈ Fin(X). (2.1)

We consider the sets from (2.1) as megacities. These megacities are visiting objects. Suppose that

(

X0 ∩Mj = ∅ ∀j ∈ 1, N
)

&
(

Mp ∩Mq = ∅ ∀p ∈ 1, N ∀q ∈ 1, N \ {p}
)

. (2.2)

Conditions (2.2) are typical for routing problems. Finally, we fix (nonempty) relations

M1 ∈ P ′(M1 ×M1), . . . , MN ∈ P ′(MN ×MN). (2.3)

An ordered pair of Mj, j ∈ 1, N, defines possible variants of works connected with visiting Mj . We
call these works internal. For every megacity, we introduce arrival points and departure points:

Mj
△
= { pr1(z) : z ∈ Mj} and Mj

△
= { pr2(z) : z ∈ Mj} for j ∈ 1, N ; of course, Mj ∈ P ′(Mj) and

Mj ∈ P ′(Mj). Moreover, we obtain that

(

X
△
= X0 ∪ (

N
⋃

i=1

Mi) ∈ Fin(X)
)

&
(

X
△
= X0 ∪ (

N
⋃

i=1

Mi) ∈ Fin(X)
)

.

Let N
△
= P ′(1, N), and let N(j) △

= { K ∈ N|j ∈ K} for j ∈ 1, N. We fix N mappings

A1 : (X \M1)×N
(1) −→ P ′(M1), . . . , AN : (X \MN)×N

(N) −→ P ′(MN) (2.4)

with the following property:

Aj(x,K) ∩Mj 6= ∅ ∀j ∈ 1, N ∀x ∈ X \Mj ∀K ∈ N
(j). (2.5)

The mappings (2.4) are used for constraints representation; (2.5) is a compatibility condition. We
note that our construction is similar to [2, Sect. 2]. But our mappings (2.4) are defined on smaller
sets as compared with analogous mappings from [2, Sect. 2]. Note that our mappings (2.4) can be
extended to analogous mappings from [2] (the corresponding variant was considered in [2, p. 215]).
In this extension of our definition, conditions (2.5) turn into [2, (3)]. So, this extension is an
unessential operation.

In what follows, P
△
= (bi)[1, N]; elements of P are complete routes (index permutations).

If α ∈ P, then α−1 ∈ P is the inverse of α:

α(α−1(k)) = α−1(α(k)) = k ∀k ∈ 1, N.

A specific choice of α ∈ P may be restricted by precedence conditions. For their introduction, we
suppose that a set K ∈ P(1, N × 1, N) is given. Let

∀K0 ∈ P ′(K) ∃z0 ∈ K0 : pr1(z0) 6= pr2(z) ∀z ∈ K0. (2.6)

Specific cases of (2.6) were discussed in [3, Ch. 2]. Let

A
△
=

{

α ∈ P| ∀t1 ∈ 1, N ∀t2 ∈ 1, N
(

(α(t1), α(t2)) ∈ K
)

=⇒ (t1 < t2)
}

=
{

α ∈ P| α−1(pr1(z)) < α−1(pr2(z)) ∀z ∈ K
}

6= ∅

On Routing Problem with Starting Point Optimization 47

be the set of all routes (permutations) admissible by precedence. We consider the following pro-
cesses:

(x ∈ X0) −→ (x
(1)
1 ∈ Aα(1)(x, 1, N) x

(1)
2 ∈ Mα(1)) −→

(

x
(2)
1 ∈ Aα(2)(x

(1)
2 , 1, N \ {α(1)})

 x
(2)
2 ∈ Mα(2)

)

−→ · · · −→
(

x
(N)
1 ∈ Aα(N)(x

(N−1)
2 , {α(N)}) x

(N)
2 ∈ Mα(N)

)

(2.7)

where α ∈ A and (x
(j)
1 , x

(j)
2) ∈ Mα(j) for j ∈ 1, N (here, we suppose that the numberN is sufficiently

great). From (2.7), it is obvious that a trajectory coordinated with the route α is used. Let us
introduce the corresponding definition. Let Z be the set of all mappings from 0, N to X ×X. So,
elements of Z are tuples

(zi)i∈0,N : 0, N −→ X×X

and only they. If x ∈ X0 and α ∈ P, then

Zα[x]
△
= { (zt)t∈0,N ∈ Z|(z0 = (x, x))&(zt ∈ Mα(t) ∀t ∈ 1, N)

&(pr1(zs) ∈ Aα(s)(pr2(zs−1), {α(l) : l ∈ s,N}) ∀s ∈ 1, N)}.
(2.8)

It is easy to verify that (2.8) corresponds to [2, (4)] (for x = x0 in [2, (4)]). By analogy with [2],
we give a natural extension of (2.8) to the case when the index set 1, N is replaced by K ∈ N. For
K ∈ N, we introduce the set ZK of all tuples

(zt)t∈0,|K| : 0, |K| −→ (X ∪X)×X.

Then, for x ∈ X, K ∈ N, and α ∈ (bi)[K], we suppose that

Z(x,K,α)
△
=

{

(zt)t∈0,|K|
∈ ZK |(z0 = (x, x))&(zt ∈ Mα(t) ∀t ∈ 1, |K|)

&(pr1(zs) ∈ Aα(s)(pr2(zs−1), {α(l) : l ∈ s, |K|}) ∀s ∈ 1, |K|)
}

;
(2.9)

see [2, (5)]. It is verified by induction that (2.9) is a nonempty set. Besides, relations (2.3) are
finite. Therefore,

Z(x,K,α) ∈ Fin(ZK) ∀x ∈ X ∀K ∈ N ∀α ∈ (bi)[K]. (2.10)

Moreover, Zα[x] = Z(x, 1, N, α) ∀x ∈ X ∀α ∈ P. As a result, by (2.10),

Zα[x] ∈ Fin(Z) ∀x ∈ X0 ∀α ∈ P.

Now, we introduce a modification of mappings (2.4). Namely, for j ∈ 1, N, x ∈ X \ Mj , and
K̃ ∈ N

(j), we suppose that

Aj(x, K̃)
△
= { z ∈ Mj| pr1(z) ∈ Aj(x, K̃)}. (2.11)

Then, by (2.9) and (2.11), we get that

Z(x,K,α)=
{

(zt)t∈0,|K|
∈ ZK | (z0 = (x, x))

&(zt ∈ Aα(t)(pr2(zt−1), {α(l) : l ∈ t, |K|}) ∀t ∈ 1, |K|)
}

(2.12)

for x ∈ X, K ∈ N, and α ∈ (bi)[K]. As a particular case of (2.12), the following representation
holds for x ∈ X0 and α ∈ P:

Zα[x] =
{

(zt)t∈0,N ∈ Z| (z0 = (x, x))&(zt ∈ Aα(t)(pr2(zt−1), {α(l) : l ∈ t,N}) ∀t ∈ 1, N)
}

.

48 Alexander G. Chentsov and Pavel A. Chentsov

By analogy with [6, (2.11)], for x ∈ X0, we set

D̃[x]
△
=

{

(α, z) ∈ A× Z|z ∈ Zα[x]
}

. (2.13)

Of course, D̃[x] ∈ Fin(A× Z) ∀x ∈ X0. Finally,

D
△
=

{

(α, z, x) ∈ A× Z×X0|(α, z) ∈ D̃[x]
}

∈ Fin(A× Z×X0). (2.14)

In what follows, we suppose that M
△
=

N
⋃

i=1
Mi; of course, M ∈ Fin(X).

Cost functions. We fix the following N + 2 functions:

c ∈ R+[X× X×N], c1 ∈ R+[M1 ×N], . . . , cN ∈ R+[M1 ×N], f ∈ R+[M×X0]. (2.15)

We use the function c to estimate the (exterior) permutations between megacities and from X0

to megacities. We use the functions cj , j ∈ 1, N , to estimate the (interior) works connected with

visiting Mj . Finally, f estimates the terminal state of our process (the point x
(N)
2 in (2.7)). In

what follows, we consider only an additive criterion. For x ∈ X0, α ∈ P, and (zt)t∈0,N ∈ Zα[x], we
consider

Cα[(zt)t∈0,N |x]
△
=

N
∑

t=1

[

c(pr2(zt−1),pr1(zt), {α(k) : k ∈ t,N})+cα(t)(zt, {α(k) : k ∈ t,N})
]

+f(pr2(zN), x) ∈ R+

(2.16)

as a base for the criterion in an x-problem (x is a starting point). For x ∈ X0, we obtain the
following x-problem:

Cα[z|x] −→ min, (α, z) ∈ D̃[x]; (2.17)

for this problem, the define the extremum V [x] ∈ R+ as the smallest of the numbers Cα[z|x],
(α, z) ∈ D̃[x]. Moreover, for x ∈ X0,

(SOL)[x]
△
=

{

(α, z) ∈ D̃[x]| Cα[z|x] = V [x]
}

∈ P ′(D̃[x]) (2.18)

is the set of all optimal solutions of problem (2.17).
Now, we introduce the following complete problem:

Cα[z|x] −→ min, (α, z, x) ∈ D. (2.19)

For this problem, the global extremum is defined as

V
△
= min

(α,z,x)∈D
Cα[z|x] ∈ R+ (2.20)

and the set of all optimal solutions is

SOL
△
=

{

(α, z, x) ∈ D| Cα[z|x] = V
}

∈ Fin(D).

The following representation of V (2.20) is also useful:

V
△
= min

x∈X0
V [x]. (2.21)

In this paper, we consider only the possibilities of DP as a method for investigating problems (2.17)
and (2.19). We keep in mind a variant of DP, which is a development of a scheme from [1]. Using
representation (2.21), we consider the problem

V [x] −→ min, x ∈ X0.

This problem allows us to obtain (see (2.21)) important properties of solutions to problem (2.19)
in terms of x-problems (2.17), x ∈ X0.

On Routing Problem with Starting Point Optimization 49

3. Dynamic programming

For the DP procedure developing an approach of [1], the dependence of the terminal function f

on the starting point is an essentially complicated circumstance. Indeed, its own version of DP is
required for every x ∈ X0 (we keep in mind the search of optimal solutions to problem (2.19)).
Therefore, we first consider a simpler case when the terminal function is independent of points
from X0. More precisely, in this section, we fix

f ∈ R+[M]. (3.1)

Now, we introduce analogs of problems (2.17) and (2.19) corresponding to the change f −→ f . For
this, we replace (2.16) by the following expression for x ∈ X0, α ∈ P, and (zt)t∈0,N ∈ Zα[x]:

Ĉα[(zt)t∈0,N |f]
△
=

N
∑

t=1

[

c(pr2(zt−1),pr1(zt), {α(k) : k ∈ t,N})+cα(t)(zt, {α(k) : k ∈ t,N})
]

+f(pr2(zN)) ∈ R+.

(3.2)

Then, (2.17) becomes the following problem. For x ∈ X0, we consider the following (auxiliary)
x-problem:

Ĉα[z|f] −→ min, (α, z) ∈ D̃[x]; (3.3)

for problem (3.3), we introduce the extremum V̂ [x|f] as the smallest of the numbers Ĉα[z|f],
(α, z) ∈ D̃[x]. Similarly, we replace (2.19) by the following (complete) problem:

Ĉα[z|f] −→ min, (α, z, x) ∈ D. (3.4)

For this problem, we consider the extremum

V̂[f]
△
= min

(α,z,x)∈D
Ĉα[z|f] ∈ R+. (3.5)

Moreover, by (2.15) and (3.5), we get that

V̂[f] = min
x∈X0

V̂ [x|f].

Now, for x ∈ X0, we introduce the set

Ŝ[x|f]
△
=

{

(α, z) ∈ D̃[x]| Ĉα[z|f] = V̂ [x|f]
}

∈ Fin(D̃[x]) (3.6)

of all optimal solutions to problem (3.3). Finally,

Ŝ[f]
△
=

{

(α, z, x) ∈ D| Ĉα[z|f] = V̂[f]
}

∈ Fin(D)

is the set of all optimal solutions to problem (3.4).
Returning to (2.12), we introduce partial routes admissible by deletion (tasks from a list).

Namely, we introduce a mapping I operating in N by the following rule for K ∈ N:

I(K)
△
= K \ {pr2(z) : z ∈ Ξ[K]}, (3.7)

where Ξ[K]
△
=

{

z ∈ K| (pr1(z) ∈ K)&(pr2(z) ∈ K)
}

. Suppose that, for K ∈ N,

(I− bi)[K]
△
=

{

α ∈ (bi)[K]| α(s) ∈ I({α(t) : t ∈ s, |K|}) ∀s ∈ 1, |K|
}

.

50 Alexander G. Chentsov and Pavel A. Chentsov

Then, by statements of [3, Part 2], (I− bi)[K] 6= ∅ for K ∈ N; moreover,

A = (I − bi)[1, N] =
{

α ∈ P| (α(1) ∈ I(1, N))

&(α(k) ∈ I(1, N \ {α(l) : l ∈ 1, k − 1}) ∀k ∈ 2, N)
}

.
(3.8)

Thus, according to (3.1), the admissibility by precedence and the admissibility by deletion are
identical for complete routes. Now, for x ∈ X and K ∈ N, we consider the corresponding partial
routing problem. First, we introduce a partial criterion. If x ∈ X, K ∈ N, α ∈ (bi)[K], and
(zt)t∈0,|K|

∈ Z(x,K,α), then

Ĉ
∗
α[(zt)t∈0,|K||f ;K]

△
=

|K|
∑

s=1

[

c(pr2(zs−1),pr1(zs), {α(t) : t ∈ s, |K|})

+cα(s)(zs, {α(t) : t ∈ s, |K|})
]

+ f(pr2(z|K|)).

(3.9)

Of course, the case K = 1, N is possible; so, for α ∈ P and (zt)t∈0,N ∈ Zα[x], the number

Ĉ
∗
α[(zt)t∈0,N |f ; 1, N] ∈ R+ is defined. In addition, by (3.2) and (3.9), for x ∈ X, K ∈ N, α ∈ P,

and z ∈ Zα[x], we have
Ĉα[z|f] = Ĉ

∗
α[z|f ; 1, N]. (3.10)

By analogy with (2.13), for x ∈ X and K ∈ N, we set

D̂∗(x,K)
△
=

{

(α, z) ∈ (I− bi)[K]× ZK | z ∈ Z(x,K,α)
}

∈ Fin((I − bi)[K]× ZK).

For x ∈ X and K ∈ N, consider the following problem:

Ĉ
∗
α[z| f ;K] −→ min, (α, z) ∈ D̂∗(x,K);

vf (x,K) denotes the smallest of the numbers Ĉ∗
α[z| f ;K], (α, z) ∈ D̂∗(x,K). Note that, by (2.13)

and (3.8), we have
D̃[x] = D̂∗(x, 1, N) ∀x ∈ X0. (3.11)

From (3.10) and (3.11), we get that

V̂ [x|f] = vf (x, 1, N) ∀x ∈ X0. (3.12)

Finally, we set

vf (x,∅)
△
= f(x) ∀x ∈ M. (3.13)

Now we construct a function defined on (X×N) ∪ (M× {∅}). Namely,

vf ∈ R+[(X×N) ∪ (M× {∅})]

is defined by the following conditions:

(

vf (x,K)
△
= min

(α,z)∈D̂∗(x,K)
Ĉ
∗
α[z|f ;K] ∀(x,K) ∈ X×N

)

&(vf (x,∅)
△
= f(x) ∀x ∈ M) (3.14)

(we use the obvious equality P(1, N) = N ∪ {∅}). By (3.12), we define the value function

V̂ [·|f]
△
= (V̂ [x|f])x∈X0 ∈ R+[X

0]. (3.15)

Theorem 1. If x ∈ X and K ∈ N, then

vf (x,K) = min
j∈I(K)

min
z∈Aj(x,K)

[

c(x,pr1(z),K) + cj(z,K) + vf (pr2(z),K \ {j})
]

. (3.16)

On Routing Problem with Starting Point Optimization 51

Theorem 1 is extracted from [2, Theorem 1]. Now, we discuss only some peculiarities (note
that [2, Theorem 1] was proved by analogy with [4, Theorem 5.1]). In [2, Theorem 1], the case of
fixed starting point was considered. However, the Bellman function from [2, Sect. 3] can be defined
on the set X × P(1, N) (note that, in [4], not the whole Bellman function was used): we follow a
scheme of [2, Sect. 3] for every starting point from X0. In addition, the definition of the Bellman
function from [2, Sect. 3] corresponds to (3.14). Thus, Theorem 1 from [2] is true in our case (also
note [13, Theorem 1] where this question was also considered). We obtain (3.16). As a particular
case, we note the corresponding analog of [2, (18)]: if x ∈ X0, then, by (3.12) and (3.16),

V̂ [x|f] = min
j∈I(1,N)

min
z∈Aj(x,1,N)

[

c(x,pr1(z), 1, N) + cj(z, 1, N) + vf (pr2(z), 1, N \ {j})
]

. (3.17)

As in [2–4, 6], to reduce computational complexity, we will only constructbuild special layers
of our Bellman function. First, we introduce special subsets of 1, N. We consider these subsets as
substantial task lists. Let

G
△
=

{

K ∈ N| ∀z ∈ K (pr1(z) ∈ K) =⇒ (pr2(z) ∈ K)
}

.

Let also Gs
△
= { K ∈ G| s = |K|} ∀s ∈ 1, N. Then {G1; . . . ;GN} is a partition of G; GN = {1, N}

and G1 =
{

{t} : t ∈ 1, N \K1

}

, where K1
△
= {pr1(z) : z ∈ K}. Finally (see [2–4, 6]),

Gs−1 = { K \ {t} : K ∈ Gs, t ∈ I(K)}. (3.18)

So, we can implement the procedure GN −→ GN−1 −→ · · · −→ G1 (we use (3.18)). Further, we

construct sets D0, D1, . . . ,DN . Let DN
△
= { (x, 1, N) : x ∈ X0} and

D0
△
= { (x,∅) : x ∈

⋃

i∈1,N\K1

Mi}. (3.19)

For s ∈ 1, N − 1 and K ∈ Gs, we successively construct

Js(K)
△
=

{

j ∈ 1, N \K| {j} ∪K∈Gs+1

}

, Ms[K]
△
=

⋃

j∈Js(K)

Mj , Ds[K]
△
=

{

(x,K) : x∈Ms[K]
}

(all these sets are nonempty; see [3, Sect. 4.9]). Finally, for s ∈ 1, N − 1, we set

Ds
△
=

⋃

K∈Gs

Ds[K].

So, all layers D0, D1, . . . ,DN are constructed. We recall that (see [2, (3.6)])

(

pr2(z),K \ {j}
)

∈ Ds−1 ∀s ∈ 1, N ∀(x,K) ∈ Ds ∀j ∈ I(K) ∀z ∈ Mj. (3.20)

Now, we construct the Bellman function layers using Theorem 1 and (3.20). More precisely, we
keep in mind the functions

v
(0)
f ∈ R+[D0], v

(1)
f ∈ R+[D1], . . . , v

(N)
f ∈ R+[DN]. (3.21)

Using (3.13) and (3.19), we set

v
(0)
f (x,∅)

△
= f(x) ∀x ∈

⋃

i∈1,N\K1

Mi. (3.22)

52 Alexander G. Chentsov and Pavel A. Chentsov

In general, we define v
(s)
f

for s ∈ 0, N by the following rule:

v
(s)
f

(x,K)
△
= vf (x,K) ∀(x,K) ∈ Ds (3.23)

((3.22) is a particular case of (3.23)). Of course, (3.23) is a mathematical definition. Now, we

introduce a recurrence procedure for immediate construction of all functions (3.21). Namely, v
(0)
f

is known (see (3.22)). For s ∈ 1, N, the transformation v
(s−1)
f −→ v

(s)
f is implemented by the rule

v
(s)
f

(x,K)= min
j∈I(K)

min
z∈Aj(x,K)

[

c(x,pr1(z),K)+cj(z,K)+v
(s−1)
f

(pr2(z),K \ {j})
]

∀(x,K)∈Ds.

(3.24)
So, (3.24) defines the following recurrence procedure:

v
(0)
f −→ v

(1)
f −→ · · · −→ v

(N)
f .

Note that, by (3.23), v
(N)
f

(x,K) = vf (x,K) for (x,K) ∈ DN . Using (3.12) and the representation
of DN , we get that

V̂ [x|f] = vf (x, 1, N) = v
(N)
f

(x, 1, N) ∀x ∈ X0. (3.25)

Here, we note an obvious corollary of (3.17). Namely, by (3.20), we get that,
(pr2(z), 1, N \ {j}) ∈ DN−1 for x ∈ X0, j ∈ I(1, N), and z ∈ Mj . Therefore, by (3.17), we have

V̂ [x|f]= min
j∈I(1,N)

min
z∈Aj(x,1,N)

[c(x,pr1(z), 1, N) + cj(z, 1, N) + v
(N−1)
f (pr2(z), 1, N \ {j})] ∀x∈X0

(we use (2.11) and (3.23)). So, we can construct V̂ [·|f] (3.15). As a corollary, we can find V̂[f] (3.8)
and a point x0 ∈ X0 for which V̂ [x0|f] = V̂[f]. So, x0 is an optimal starting point in the problem
with the terminal function f .

Now, we will build an optimal solution to problem (3.7). We fix a point x0 with this optimality

property. Let z(0)
△
= (x0, x0). Using (3.24), we choose η1 ∈ I(1, N) and z(1) ∈ Aη1(x

0, 1, N) for
which

V̂ [x0|f] = c(x0,pr1(z
(1), 1, N) + cη1(z

(1), 1, N) + v
(N−1)
f (pr2(z

(1)), 1, N \ {η1}) (3.26)

(we follow a procedure of [2, Sect. 4]). Then, (pr2(z
(1)), 1, N \ {η1}) ∈ DN−1, and therefore

(see (3.24))

v
(N−1)
f (pr2(z

(1)), 1, N \ {η1})= min
j∈I(1,N\{η1})

min
z∈Aj(pr2(z

(1),1,N\{η1})

[

c(pr2(z
(1)),pr1(z), 1, N \ {η1})

+cj(z, 1, N \ {η1})+v
(N−2)
f

(pr2(z), 1, N \ {η1; j})
]

; (3.27)

of course, we take into account that, by (3.20),

(pr2(z), 1, N \ {η1; j}) = (pr2(z), (1, N \ {η1}) \ {j}) ∈ DN−2 ∀j ∈ I(1, N \ {η1}) ∀z ∈ Mj.

Now, using (3.27), we choose η2 ∈ I(1, N \ {η1}) and z(2) ∈ Aη2(pr2(z
(1), 1, N \ {η1}) for which

v
(N−1)
f (pr2(z

(1)), 1, N \ {η1}) = c(pr2(z
(1)),pr1(z

(2)), 1, N \ {η1}) + cη2(z
(2), 1, N \ {η1})

+v
(N−2)
f (pr2(z

(2)), 1, N \ {η1; η2}).
(3.28)

On Routing Problem with Starting Point Optimization 53

From (3.26) and (3.28), we get that

V̂ [x0|f] = c(pr2(z
(0)),pr1(z

(1)), 1, N) + c(pr2(z
(1)),pr1(z

(2)), 1, N \ {η1}) + cη1(z
(1), 1, N)

+cη2(z
(2), 1, N \ {η1}) + v

(N−2)
f

(pr2(z
(2)), 1, N \ {η1; η2}).

Of course, η1 6= η2. Further, procedures similar to (3.26) and (3.28) must be continued until 1, N

is exhausted. As a result (see [2, Sect. 4]), η
△
= (ηj)j∈1,N ∈ A and (z(j))j∈0,N ∈ Zη[x

0] with the
property

Ĉη[(z
(j))j∈0,N |f] = V̂ [x0|f] (3.29)

will be build. Using the optimality of x0, we get from (3.29) that

(η, (z(j))j∈0,N , x0) ∈ Ŝ[f] (3.30)

(indeed, by (3.6) and (3.29), (η, (z(j))j∈0,N) ∈ Ŝ[x0|f]). So, for problem (3.4), we found the global

extremum V̂[f] and an optimal solution. In what follows, we consider (3.4) as an auxiliary problem.

4. Individual dynamic programming

Now, we return to problem (2.19) for which the terminal component of our criterion corresponds
to (2.16). In this case, the DP procedure is “attached” to the starting point. More precisely, its own
DP procedure is required for every point x ∈ X0. This procedure corresponds to [4, 5]. Therefore,
we consider it very briefly. We use G1, G2, . . . ,GN and layers D0, D1, . . . ,DN−1 from Section 3.

For x ∈ X0, we fix DN (x)
△
= {(x, 1, N)} and obtain a singleton attached to the starting point x.

To universal notation, we set

(

Dj(x)
△
= Dj ∀j ∈ 0, N − 1

)

&
(

DN (x)
△
= {(x, 1, N)}

)

, (4.1)

where x ∈ X0. By (4.1), we have only one singular layer (corresponding to the index N). Recall
(see [5]) that, for x ∈ X0,

(pr2(z),K \ {j}) ∈ Ds−1(x) ∀s ∈ 1, N ∀(y,K) ∈ Ds(x) ∀j ∈ I(K) ∀z ∈ Mj. (4.2)

So, in (4.2), we have a natural analog of (3.20).
Note that, to solve the x-problem for x ∈ X0, we can use a DP procedure from [2] (a DP

procedure from [5] is a particular case of that from [2]). Now, we will restrict ourselves to the
algorithmic version of the presentation.

For more concise notation, we fix x ∈ X0 unless otherwise stated. Recall that Dj(x) 6= ∅

∀j ∈ 0, N. Now, we introduce a recurrence procedure for constructing layers of the Bellman function

v0[x] ∈ R+[D0(x)], v1[x] ∈ R+[D1(x)], . . . , vN [x] ∈ R+[DN (x)]. (4.3)

Let
v0[x](y,∅)

△
= f(y, x) ∀y ∈

⋃

j∈1,N\K1

Mj ; (4.4)

we use the obvious equality D0(x) = D0, see (3.19). Further, for s ∈ 1, N, transformation of
vs−1[x] ∈ R+[Ds−1(x)] to vs[x] ∈ R+[Ds(x)] is defined by the following rule for (y,K) ∈ Ds(x):

vs[x](y,K)
△
= min

j∈I(K)
min

z∈Aj(y,K)

[

c(y,pr1(z),K) + cj(z,K) + vs−1[x](pr2(z),K \ {j})
]

(4.5)

54 Alexander G. Chentsov and Pavel A. Chentsov

(we use (4.2)). In this section, we suppose that functions (4.3) are implemented by the procedure

v0[x] −→ v1[x] −→ · · · −→ vN [x]. (4.6)

More precisely, we have v0[x] (see (4.4)) and construct v1[x] using (4.5) for s = 1 and so on. Here,
there exists a unique Bellman function (see [2, Sect. 3]) for which functions (4.3) are implemented
as a contraction system; this property is similar to (3.23). But now we restrict ourselves to the
recurrence procedure (4.6).

The function vN [x] is defined by the unique value

vN [x](x, 1, N) = V [x] (4.7)

similar to (3.25); in this connection, see [2, (2.3)]. We obtain an extremum of the x-problem (2.17).
Now we will very briefly consider the procedure that implements an element of (SOL)[x] (2.18).

Suppose that h(0) △
= (x, x). Using an analog of [2, (23)], we choose ζ1 ∈ I(1, N) and

h(1) ∈ Aζ1(x, 1, N) for which

V [x] = c(x,pr1(h
(1)), 1, N) + cζ1(h

(1), 1, N) + vN−1[x](pr2(h
(1)), 1, N \ {ζ1}); (4.8)

by (4.2), we have (pr2(h
(1)), 1, N \ {ζ1}) ∈ DN−1(x). From (4.5), we get that

vN−1[x](pr2(h
(1)), 1, N \ {ζ1}) = min

j∈I(1,N\{ζ1})
min

z∈Aj(pr2(h
(1)),1,N\{ζ1})

[

c(pr2(h
(1)),pr1(z),

1, N \ {ζ1}) + cj(z, 1, N \ {ζ1}) + vN−2[x](pr2(z), 1, N \ {ζ1; j})
]

.

(4.9)

Using (4.9), we choose ζ2 ∈ I(1, N \ {ζ1}) and h(2) ∈ Aζ2(pr2(h
(1)), 1, N \ {ζ1}) for which

vN−1[x](pr2(h
(1)), 1, N \ {ζ1}) = c(pr2(h

(1)),pr1(h
(2)), 1, N \ {ζ1})

+cζ2(h
(2), 1, N \ {ζ1}) + vN−2[x](pr2(h

(2)), 1, N \ {ζ1; ζ2}).
(4.10)

By (4.2), we have (pr2(h
(2)), 1, N \{ζ1; ζ2}) = (pr2(h

(2)), (1, N \{ζ1})\{ζ2}) ∈ DN−2(x). From (4.8)
and (4.10), we obtain the following equality:

V [x] = c(x,pr1(h
(1)), 1, N) + c(pr2(h

(1)),pr1(h
(2)), 1, N \ {ζ1}) + cζ1(h

(1), 1, N)

+ cζ2(h
(2), 1, N \ {ζ1}) + vN−2[x](pr2(h

(2)), 1, N \ {ζ1; ζ2}).
(4.11)

Further, procedures similar to (4.8) and (4.10) must be continued until 1, N is exhausted. As a
result, we get (see [2, Sect. 4]) that

ζ
△
= (ζj)j∈1,N ∈ A : (h(j))j∈0,N ∈ Zζ [x]; (4.12)

in addition, Cζ [(h
(j))j∈0,N |x] = V [x] (the latter equality for N = 2 follows from (4.11)). Thus,

(ζ, (h(j))j∈0,N) ∈ (SOL)[x].

Remark 1. Now, we return to procedure (4.6). If our goal is only to define V [x] (4.7), then
we can use the following analog of a procedure from [15]. Namely, we consider the issue of some
memory savings. We have v0[x]. Let s ∈ 1, N and vs−1[x] be known. Then, by (4.5), we construct
vs[x]. If s = N, then our procedure is complete. If s < N, then vs−1[x] is annihilated and replaced
by vs[x]. So, in the computer memory for this scheme there situated only one layer of the Bellman
function. As a result, we obtain (4.7). This procedure must be implemented for every x ∈ X0. In
addition, we can determine all values V [x], x ∈ X0 without using (4.8)–(4.11). As a result, we can
find V (2.21) and x0 ∈ X0 for which V [x0] = V.

On Routing Problem with Starting Point Optimization 55

Further, we implement scheme (4.8)–(4.11) for x = x0. Since (ζ, (h(j))j∈0,N , x0) (see (4.12)),
we obtain an optimal solution to problem (2.19). Our scheme includes solutions to all x-problems
(2.17), although using (4.8)–(4.11) is required once. We get a laborious procedure. Therefore,
below we will consider an approach in which it is assumed that the enumeration of not all points
x ∈ X0 is realized. Namely, we introduce special majorizing and minorazing problems for which
simpler versions of DP procedures can be used.

5. Auxiliary routing problems and enumeration problem

First, we introduce a special variant of the problem from Section 3. Consider a function
O ∈ R+[M] such that

O(x)
△
= 0 ∀x ∈ M. (5.1)

Now, we implement the constructions from Section 3 for

f = O. (5.2)

But, in this implementation, we first restrict ourselves to the construction of the function

V̂ [·|O] = (V̂ [x|O])x∈X0 ∈ R+[X
0]. (5.3)

For this, we use a variant of DP similar to that in Remark 1. More precisely, we use the layers
D0, D1, . . . ,DN from Section 3 with property (3.20).

Further, we construct functions (3.21) for (5.2). Namely, v
(0)
O ∈ R+]D0] is defined by the

rule v
(0)
O (x,K) = 0 ∀(x,K) ∈ D0; thus, v

(0)
O is identically equal to zero. If s ∈ 1, N and

v
(s−1)
O ∈ R+[Ds−1] is known, then we define v

(s)
O ∈ R+[Ds] by the rule

v
(s)
O (x,K)= min

j∈I(K)
min

z∈Aj(x,K)
[c(x,pr1(z),K)+cj(z,K)+v

(s−1)
O (pr2(z),K \ {j})] ∀(x,K)∈Ds. (5.4)

If s = N, then V̂ [x|O] = v
(s)
O (x, 1, N) ∀x∈X0 (we obtain function (5.3)); our procedure is com-

plete. If s < N, then v
(s−1)
O is annihilated and replaced by v

(s)
O . The layer v

(s)
O is used for construct-

ing v
(s+1)
O . As a result, we obtain v

(N)
O ∈ R+[DN] for which

V̂ [·|O] = v
(N)
O . (5.5)

Further, we use (5.5) to construct a majorizing function on X0. In addition, by (2.16) and (3.2) for
x ∈ X0, α ∈ P, and (zt)t∈0,N ∈ Zα[x], we have

Cα[(zt)t∈0,N |x] = Ĉα[(zt)t∈0,N |O] + f(pr2(zN), x) ≥ Ĉα[(zt)t∈0,N |O]. (5.6)

As a result, from (2.17), (3.3), and (5.6), we get that

V̂ [x|O] ≤ V [x] ∀x ∈ X0. (5.7)

So, for now, we have a lower bound for V [·]. To construct an upper bound, we need a procedure of
type (3.26)–(3.30). First, we implement the construction procedure for all functions

v
(0)
O , v

(1)
O , . . . , v

(N)
O (5.8)

using the above variant from the present section with the following correction: all functions (5.8)
are preserved in computer memory. So, we do not rewrite layers of the Bellman function.

56 Alexander G. Chentsov and Pavel A. Chentsov

As a result, we obtain all layers (5.8). It is important that all these layers are constructed by one
DP procedure: we have a DP procedure universal relative to the starting point. As in Section 4, this
procedure is based on (5.4). But in this procedure, we accumulate our own knowledge about (5.8)
(when defining only (5.5), we do not accumulate this knowledge).

Further, by means of layers (5.8), for every x ∈ X0, we use (4.8)–(4.11) for f = O. So, for every
x ∈ X0, we find the set Ŝ[x|O] (see (3.6)) of all optimal solutions to problem (3.3).

Further, for x ∈ X0 and (α, z) ∈ Ŝ[x|O], we set

ṽ(α, z, x)
△
= V̂ [x|O] + f(pr2(z(N)), x). (5.9)

We obtain the following new dependence for x ∈ X0:

(α, z) 7−→ ṽ(α, z, x) : Ŝ[x|O] −→ R+.

Consider the number

V̂[x]
△
= min

(α,z)∈Ŝ[x|O]
ṽ(α, z, x) = V̂ [x|O] + min

(α,z)∈Ŝ[x|O]
f(pr2(z(N)), x). (5.10)

Of course, (5.10) defines a function V̂[·], x 7−→ V̂[x] : X0 −→ R+.

Proposition 1. If x ∈ X0, then V [x] ≤ ṽ(α, z, x) ∀(α, z) ∈ Ŝ[x|O].

P r o o f. Fix x∗ ∈ X0 and (α∗, z∗) ∈ Ŝ[x|O]. Then, by (5.9), we have

ṽ(α∗, z∗, x∗) = V̂ [x∗|O] + f(pr2(z
∗(N)), x∗). (5.11)

In addition, by (3.2) and (5.1), we obtain the equality

Ĉα∗ [z∗|O]=

N
∑

t=1

[

c(pr2(z
∗(t−1)),pr1(z

∗(t)), {α∗(k) : k∈t,N})+cα∗(t)(z
∗(t), {α∗(k) : k∈t,N})

]

.

By the choice of (α∗, z∗) and (3.6), the following equality holds:

Ĉα∗ [z∗|O] = V̂ [x∗|O]. (5.12)

By (2.16) and (5.11)–(5.12), we get that

ṽ(α∗, z∗, x∗) = Ĉα∗ [z∗|O] + f(pr2(z
∗(N)), x∗) =

N
∑

t=1

[

c(pr2(z
∗(t− 1)),pr1(z

∗(t)), {α∗(k) : k ∈ t,N})

+cα∗(t)(z
∗(t), {α∗(k) : k ∈ t,N})

]

+ f(pr2(z
∗(N)), x∗) = Cα∗ [z∗|x∗]. (5.13)

In addition, (α∗, z∗) ∈ D̃[x∗] (see (3.6)). Therefore (see (2.17)), V [x∗] ≤ Cα∗ [z∗|x∗]. The required
inequality ṽ(α∗, z∗, x∗) ≥ V [x∗] follows from (5.13). Since x∗ and (α∗, z∗) were chosen arbitrarily,
our proposition is established. �

Corollary 1. The inequality V [x] ≤ V̂[x] holds for x ∈ X0.

P r o o f. The proof is an immediate combination of (5.10) and Proposition 1. �

So, we get that V̂[·]
△
= (V̂[x])x∈X0 ∈ R+[X

0] is a majorant for V [·]:

V [x] ≤ V̂[x] ∀x ∈ X0. (5.14)

On Routing Problem with Starting Point Optimization 57

In this connection, we introduce the number

V
△
= min

x∈X0
V̂[x] ∈ R+. (5.15)

From (2.21), (5.14), and (5.15), we obtain the following estimate:

V ≤ V. (5.16)

For x ∈ X0, we consider
ṽ(α, z, x) −→ min, (α, z) ∈ Ŝ[x|O],

as a majorant problem. Now, we consider a variant of a minorant problem. In this construction,
we aim to make (5.7) more precise. For this, we introduce the function

ϕ
△
= (min

y∈X0
f(x, y))x∈M ∈ R+]M].

Now, we consider the scheme from Section 3 for f = ϕ. In this case, we implement layers (3.21); as
a result, we obtain the functions

v(0)ϕ ∈ R+[D0], v(1)ϕ ∈ R+[D1], . . . , v(N)
ϕ ∈ R+[DN].

We have a successive implementation v
(0)
ϕ −→ v

(1)
ϕ −→ · · · −→ v

(N)
ϕ . In addition,

v(0)ϕ (x,∅) = ϕ(x) ∀x ∈
⋃

i∈1,N\K1

Mi.

If s ∈ 1, N, then the transformation of v
(s−1)
ϕ to v

(s)
ϕ is defined by (3.24) for f = ϕ. In this

construction, we use a procedure with rewriting layers: for s < N , we use v
(s−1)
ϕ to construct v

(s)
ϕ

by the above variant of (3.24) and annihilate v
(s−1)
ϕ thereafter; using v

(s)
ϕ , we construct v

(s+1)
ϕ and

so on. From (3.25), we get that

V̂ [x|ϕ] = vϕ(x, 1, N) = v(N)
ϕ (x, 1, N) ∀x ∈ X0. (5.17)

By (5.17), we obtain the function V̂ [·|ϕ]. Now, by analogy with [6], we introduce an estimating set

X0
△
= {x ∈ X0|V̂ [x|ϕ] ≤ V}. (5.18)

The set X0
opt

△
= {x ∈ X0|V [x] = V} satisfies the inclusion

X0
opt ⊂ X0. (5.19)

The proof is similar to that of [6, Proposition 5.1].

Remark 2. For completeness, we verify (5.19). Let y ∈ X0
opt. Then y ∈ X0 and V [y] = V.

Using (2.18), we choose (α′, z′) ∈ (SOL)[y]. By the choice of y, we have

Cα′ [z′|y] = V [y] = V. (5.20)

In addition, ϕ(pr2(z
′(N))) ≤ f(pr2(z

′(N), y). As a corollary, by (3.18) and (3.2), we obtain

Ĉα′ [z′|ϕ] =

N
∑

t=1

[

c(pr2(z
′(t− 1)),pr1(z

′(t)), {α′(k) : k ∈ t,N})

+cα′(t)(z
′(t), {α′(k) : k ∈ t,N})

]

+ ϕ(pr2(z
′(N)) ≤ Cα′ [z′|y].

(5.21)

58 Alexander G. Chentsov and Pavel A. Chentsov

Since (α′, z′) ∈ D̃[y], we get that V̂ [y|ϕ] ≤ Ĉα′ [z′|ϕ]. By (5.21), V̂ [y|ϕ] ≤ Cα′ [z′|y]. Using (5.16) and
(5.20), we get that

V̂ [y|ϕ] ≤ V. (5.22)

By (5.18) and (5.22), the inclusion y ∈ X0 holds. Since y was chosen arbitrarily, the inclusion
(5.19) is established. �

Note that X0
opt 6= ∅ (see (2.21)) and, as a corollary, according to (5.19), X0 6= ∅. So,

X0 ∈ P ′(X0); by the definition from Section 2,

V = min
x∈X0

V [x]. (5.23)

Now, by analogy with [6, Sect. 5], we obtain the following scheme for solving problem (2.19). Let
us list basic steps.

(1) Determine the upper bound V (5.15) by solving the majorizing problem by means of a
universal (relative to points from X0) variant of DP.

(2) Solve the minorating problem constructing V̂ [·|ϕ] = v
(N)
ϕ by the scheme with rewriting layers

of the Bellman function (it is a universal (relative to points from X0) variant of DP).

(3) Construct the set X0.

(4) Solve all x-problems (2.17), x ∈ X0, by means of individual variants of DP; for this,
determine V [x], x ∈ X0, and implement V by (5.23) is effective. Moreover, for the
obtained point x0 ∈ X0

opt, by a procedure similar to (4.8)–(4.11), an x0-optimal solution

(α0, (z0t)t∈0,N) ∈ D̃[x0] is found. As a result, (α0, (z0t)t∈0,N , x0) ∈ SOL.

Note that step (4) can be implemented as follows. First, for every x ∈ X0, we implement a
DP procedure with rewriting layers of the Bellman function (we keep in mind an individual DP
procedure). As a result, we obtain V [x], x ∈ X0. Further, we find x0 ∈ X0 for which (see (5.23))
V [x0] = V (more precisely, we find the point of minimum of V [x], x ∈ X0). Then, x

0 ∈ X0
opt. After

that, we implement an individual variant of DP for the case x = x0 (see (4.8)–(4.12)).

6. Weakening of the closed routing problem

In this section, we will take a very short look at one traditional variant of the closed routing
problem, as well as its natural weakening. In our construction, we are oriented to [6, Sect. 6]. Let
ρ ∈ R+[X ×X] be a metric on the set X. So, (X, ρ) is a metric space. Suppose that

f(x̃, x) = ρ(x̃, x) ∀x̃ ∈ M ∀x ∈ X0. (6.1)

In fact, this requirement means that we consider the routing problem with return to the start-
ing point (see (2.16)) and the latter means the distance (this interpretation is more natural for
metric routing problems where other components of additive criterion mean the distance). In this
connection, we recall the known closed TSP (see [7, 11]).

Remark 3. Note that, in the general setting in Section 2, we can consider solutions with terminal
permutation to the starting point.

In applied problems, the requirement of return can often be weakened. Consider one variant of
such weakening. Let

B0
ρ(x, ε)

△
= { y ∈ X0| ρ(x, y) ≤ ε}

On Routing Problem with Starting Point Optimization 59

for x ∈ X0 and ε ∈ R+, ε > 0. We fix this number ε, ε > 0. In what follows, we replace f (6.1) using

another definition. For x ∈ X and A ∈ P ′(X), let ρ(x;A)
△
= inf({ ρ(x, y) : y ∈ A}); ρ(x;A) ∈ R+.

Suppose that

f(x̃, x)
△
= ρ(x̃;B0

ρ(x, ε)) ∀x̃ ∈ M ∀x ∈ X0. (6.2)

Recall that ϕ ∈ R+[M] is defined by the rule

ϕ(x) = min
y∈X0

f(x, y) = min
y∈X0

ρ(x;B0
ρ(y, ε)) ∀x ∈ M. (6.3)

Proposition 2. The equality ϕ(x) = ρ(x;X0) holds for x ∈ M in the case (6.2).

P r o o f. The corresponding scheme is similar to [6, Proposition 6.1]. Let us describe it for
completeness. Fix x∗ ∈ M. Then

ρ(x∗;X
0) = min

y∈X0
ρ(x∗, y). (6.4)

For every y ∈ X0, the inclusion y ∈ B0
ρ(y, ε)) holds; therefore, by (6.3), we have the inequality

f(x∗, y) ≤ ρ(x∗, y). As a result, ϕ(x∗) ≤ ρ(x∗, y) for y ∈ X0. Therefore, by (6.4), we have

ϕ(x∗) ≤ ρ(x∗;X
0). (6.5)

Since B0
ρ(y, ε)) ⊂ X0, we have ρ(x∗;X

0) ≤ ρ(x∗;B
0
ρ(y, ε)) = f(x∗, y) for y ∈ X0. In view

of (6.3), the inequality ρ(x∗;X
0) ≤ ϕ(x∗) is established. Using (6.5), we obtain the equality

ϕ(x∗) = ρ(x∗;X
0). Since x∗ was chosen arbitrarily, the required statement is obtained. �

So, we get that (in our case) ϕ = (ρ(x;X0))x∈M and our minorant problem coincides with
the simplest variant of Consider the simplest version of the problem that implements the lower
estimate. But, using (6.2) (instead of (6.1)), we decrease V somewhat with respect to (6.1).
Indeed, ρ(x̃;B0

ρ(x, ε)) ≤ ρ(x̃, x) for x̃ ∈ M and x ∈ X0.

We can consider the replacement (6.1) −→ (6.2) as a weakening of the initial problem with the
terminal function (6.1). For this weakening, it is required to successfully achieve a “reduction” of
the set X0 compared to X0.

7. Computational experiment

In this section, we will consider examples related to the engineering problem of cutting sheets
on CNC machines. It is assumed that a sheet cutting plan already exists. More precisely, cutting
should be done along the equidistances of the contours. For each equidistance, a corresponding
sampling is made. So, in fact, we have a “discrete equidistance.” For each point of such a discrete
equidistance, from the outside to the part, there are a piercing point and a switch-off point of the
tool. Besides, each pair of these points corresponds to the starting point of the contour cut.

We consider the set of all such points as a megacity (we mean the set of all points of the two
types listed above). The tool moves to the piercing point in idle (fast) mode. Upon reaching this
point, the tool enters the working mode and begins to pierce the metal. After piercing, the tool
moves in cutting mode to the starting point of the contour cutting. It then performs a contour
cut with finishing at the start point of the cut and travels to the switch-off point, where the tool
shuts off and starts idling to the next contour of the finish point. We do not affect the contour
cut. Each contour cut must be made once. So, we exclude this process from consideration. But

60 Alexander G. Chentsov and Pavel A. Chentsov

Figure 1. Calculation results for Example 1.

other movements can be chosen to minimize the overall tool time. It is required to regulate the
visiting process. Besides, we have to select a sequence of piercing points (and the corresponding
contour cut start points and tool switch-off points). Finally, we must choose a starting point for
our process.

Let us recall the restrictions. The precedence condition (in particular) is associated with the
following requirement: cutting the inner contours must precede the outer ones (there are other
options). In connection with other restrictions, we note the thermal tolerance (these restrictions
will be considered in the second example). These constraints lead to the use of task-list-dependent
cost functions (in our model).

In the first example, we will investigate the case considered in Section 3 (see (3.1)). Define the
sets

Aj(x,K), j ∈ 1, N, x ∈ X \Mj, K ∈ N,

for reasons of maximin of the Euqlidian distance with respect to the cut out contours. In the second
example, we will suppose that Aj(x,K) = Mj for all j ∈ 1, N , x ∈ X \Mj , and K ∈ N

(j) (so, here
we can select any piercing point).

Example 1. The calculations for the first example were performed on a computer with an Intel
Xeon CPU E5-2620 processor, 8 GB of memory, and a Windows 10 (64-bit) operating system. The
program was developed in C++ using the Qt library to build a user interface.

The number of contours is 30. The number of ordered pairs is 20.

The starting point was chosen from a rectangle with corners (0mm, 0mm), (0mm, 1000mm),
(1550mm, 1000mm), and (1550mm, 0mm). The step of point checking was 100mm.

The result is 74.507. The starting point is (0mm, 300mm). The terminal point is (0mm, 0mm).
The duration of calculation is 32 h 29 min 55 sec. The counting results are shown in Fig. 1.

Example 2. This example used a computer with an Intel i7-2630QM processor, 8 GB of memory,
and a Windows 7 (64-bit) operating system. The same language and libraries were used.

This example uses the cost functions from [5]. These functions are dependent on the list of
visited megacities and are related to the technical limitations of CNC metal cutting plants. This
allows thermal restrictions to be taken into account. There should be enough metal to provide a
quality of the cut around the finish cut segment. The dependence on the task list allows us to

On Routing Problem with Starting Point Optimization 61

Figure 2. Calculation results for Example 2.

account for the cut-out contours to fix the voids in the metal located near the sections of the cut
completion.

The length of the finish cut area 300 mm (see [5]). The width of the finish cut area is 150 mm.
A 1,000,000 penalty was used if 25% (or more) of the finish cut area was covered with holes in the
metal or outside the sheet space.

The starting point was chosen from a rectangle with corners (0mm, 0mm), (0mm, 1000mm),
(1550mm, 1000mm), and (1550mm, 0mm). The step of point checking was 100mm. Starting and
finishing points can be different. The maximum range from start to finish point must be less than
500mm.

First, a count of all start-finish points was made. 51 calculations were made. The obtained
result is 50,145. The start point is (600mm, 1000mm), and the finish point is (1000mm, 1000mm).
The duration of the calculations is 34 min 52 sec. The results are shown in Fig. 2.

Then the upper estimate of the result was found with a value of 50 475. The calculation time
was 40 sec. The number of start-finish points was reduced from 51 to 34. For these 34 points,
calculations were made with a counting time of 23 min 5 sec. The result obtained, of course, is the
same as in the case of using all start-finish points. So, the total time spent on the process with
counting the estimates and reducing the number of points is 24 min 25 sec. This is less than the
total calculation time for 51 points (34 min 52 sec).

8. Conclusion

The paper discusses an “additive” routing problem with constraints and cost functions. de-
pending on the task list. The well-known DP solution method is applied. The optimal choice of the
starting point, route, and specific trajectory has been implemented. The settings are investigated
with the requirement to return to a neighborhood of the starting point and without this require-
ment. Thus, individual (to the starting point) and universal (relative to the starting point) DP
procedures arise. In addition, the option of using a universal DP is proposed for the application of
an individual DP procedure.

62 Alexander G. Chentsov and Pavel A. Chentsov

REFERENCES

1. Bellman R. Dynamic programming treatment of the travelling salesman problem. J. ACM, 1962. Vol. 9,
No. 1. P. 61–63. DOI: 10.1145/321105.321111

2. Chentsov A.A., Chentsov A.G. Routization problem complicated by the dependence of costs functions
and “current” restrictions from the tasks list. Model. Anal. Inf. Sist., 2016. Vol. 23, No. 2. P. 211–227.
DOI: 10.18255/1818-1015-2016-2-211-227 (in Russian)

3. Chentsov A.G. Ekstremal’nye zadachi marshrutizacii i raspredeleniya zadanij: voprosy teorii [Extreme
routing and distribution tasks: theory questions]. M.-Izhevsk: R&C Dynamics. Izhevsk Institute of
Computer Research, 2008. 240 p. (in Russian)

4. Chentsov A.G. To question of routing of works complexes. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp.

Nauki, 2013. No. 1. P. 59–82. (in Russian)

5. Chentsov A.G., Chentsov P.A. Routing under constraints: Problem of visit to megalopolises. Autom.

Remote Control, 2016. Vol. 77, No. 11. P. 1957–1974. DOI: 10.1134/S0005117916110060

6. Chentsov A .G., Chentsov P.A. To the question of optimization of the starting point in the routing prob-
lem with restrictions. Izv. IMI UdGU, 2020. Vol. 55. P. 135–154. DOI: 10.35634/2226-3594-2020-55-09
(in Russian)

7. Cook W. J. In Pursuit of the Traveling Salesman. Mathematics at the Limits of Computation. N. J.:
Princeton Univer. Press, 2012. 272 p. https://www.jstor.org/stable/j.ctt7t8kc

8. Dieudonné J. Foundations of Modern Analysis. New York: Academic Press, 1960. 361 p.

9. Held M., Karp R.M. A dynamic programming approach to sequencing problems J. Soc. Indust. Appl.

Math., 1962. Vol. 10, No. 1. P. 196–210. DOI: 10.1137/0110015

10. Gimadi E.Kh., Khachay M. Ekstremal’nye zadachi na mnozhestvah perestanovok [Extremal Problems
on Sets of Permutations]. Ekaterinburg: Izdatel’stvo UMC UPI, 2016. 220 p. (in Russian)

11. Gutin G., Punnen A. P. The Traveling Salesman Problem and Its Variations. Boston: Springer, 2007.
830 p. DOI: 10.1007/b101971

12. Little J.D.C., Murty K.G., Sweeney D.W., Karel C. An algorithm for the traveling salesman problem.
Oper. Res., 1963. Vol. 11, No. 6. P. 972–989. DOI: 10.1287/opre.11.6.972

13. Kosheleva M. S., Chentsov A.A., Chentsov A.G. On a routing problem with constraints that include
dependence on a task list. Trudy Inst. Mat. i Mekh. UrO RAN, 2015. Vol. 21, No. 4. P. 178–195.
(in Russian)

14. Kuratowski K., Mostowski A. Set Theory. North-Holland, 1968. 417 p.

15. Lawler E. L. Efficient Implementation of Dynamic Programming Algorithms for Sequencing Prob-

lems. CWI. Technical Reports. Stichting Mathematish Centrum. Mathematische Besliskunde, 1979.
BW 106/79. 16 p.

16. Melamed I. I., Sergeev S. I., Sigal I. Kh. The traveling salesman problem. I: Issues in theory. Autom.

Remote Control, 1989. Vol. 50, No. 9. P. 1147–1173.

17. Melamed I. I., Sergeev S. I., Sigal I. Kh. The traveling salesman problem. II: Exact methods. Autom.

Remote Control, 1989. Vol. 50, No. 10. P. 1303–1324.

18. Melamed I. I., Sergeev S. I., Sigal I. Kh. The traveling salesman problem. Approximate algorithms. Au-
tom. Remote Control, 1989. Vol. 50, No. 11. P. 1459–1479.

https://doi.org/10.1145/321105.321111
https://doi.org/10.18255/1818-1015-2016-2-211-227
https://doi.org/10.1134/S0005117916110060
https://doi.org/10.35634/2226-3594-2020-55-09
https://www.jstor.org/stable/j.ctt7t8kc
https://doi.org/10.1137/0110015
https://doi.org/10.1007/b101971
https://doi.org/10.1287/opre.11.6.972

	General notions and designations
	The problem setting
	Dynamic programming
	Individual dynamic programming
	Auxiliary routing problems and enumeration problem
	Weakening of the closed routing problem
	Computational experiment
	Conclusion

