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WITH GRÖNWALL-TYPE CONSTRAINTS ON CONTROLS1

Bahrom T. Samatov

Namangan State Universiti,
316 Uychi Str., Namangan, 116019, Uzbekistan

samatov57@inbox.ru

Gafurjan Ibragimov

Universiti Putra Malaysia,
43400, UPM, Serdang, Selangor Darul Ehsan, Malaysia

ibragimov@upm.edu.my

Iroda V. Khodjibayeva

Namangan Engineering and Technology Institute,
7 Kosonsoy Str., Namangan, 160115, Uzbekistan

hodjira83@mail.ru

Abstract: A simple pursuit-evasion differential game of one pursuer and one evader is studied. The players’
controls are subject to differential constraints in the form of the integral Grönwall inequality. The pursuit
is considered completed if the state of the pursuer coincides with the state of the evader. The main goal
of this work is to construct optimal strategies for the players and find the optimal pursuit time. A parallel
approach strategy for Grönwall-type constraints is constructed and it is proved that it is the optimal strategy
of the pursuer. In addition, the optimal strategy of the evader is constructed and the optimal pursuit time is
obtained. The concept of a parallel pursuit strategy (Π-strategy for short) was introduced and used to solve the
quality problem for “life-line” games by L.A. Petrosjan. This work develops and expands the works of Isaacs,
Petrosjan, Pshenichnyi, and other researchers, including the authors.

Keywords: Differential game, Grönwall’s inequality, Geometric constraint, Pursuit, Evasion, Optimal strat-
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Introduction

According to the fundamental approaches in the theory of differential games developed by
Pontryagin [27] and Krasovskii [22], a differential game is considered as a control problem from
the point of view of either the pursuer or the evader. From this point of view, the game reduces
either to the problem of pursuit (approach) or to the problem of evasion (escape). In this paper,
we mainly focus on the pursuit problem.

The concept of “Differential Games” was initiated by Isaacs [20]. Differential games have
been the object of research since 1960, and fundamental results were obtained by Pontryagin [27],
Krasovskii [22], Bercovitz [4], Elliot and Kalton [9], Isaacs [20], Fleming [10], Friedman [11],
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Hajek [14], Ho, Bryson, and Baron [15], Petrosjan [26], Pshenichnyi [28, 29], Subbotin [38, 39],
Ushakov [41], Chikrii [7], and others.

The book of Isaacs [20] contains specific game problems that were discussed in detail and
proposed for further study. One of these problems is the so-called life-line problem that was initially
formulated and studied for certain special cases in [20, Problem 9.5.1]. For the case when controls
of both players are subject to geometric constraints, this game has been rather comprehensively
studied in the works of Petrosjan [26] based on approximating measurable controls with the most
efficient piecewise constant controls that realize the parallel approach strategy. Later this approach
to control in differential pursuit games was termed the Π-strategy. The strategy proposed [26] in a
simple pursuit game with geometric constraints became the starting point for the development of
the pursuit method in games with multiple pursuers (see, e.g., [3, 5, 12, 30–34]). Differential games
where both players have admissible controls satisfying integral constraints have also been considered
in several works, e.g., in [3, 32, 36, 41], although this treatment has been less comprehensive than
for games with geometric constraints [3, 5, 7, 12, 30]. Also, in [35], the intercept problem was
studied, when objects move in the dynamic flow field.

The constructing of optimal strategies of the players and finding the value of the game are
difficult and important problems of differential games. Note that in [16–19, 21, 25, 37, 40], simple-
motion differential games were studied and the existence of the value of the game was proved by
constructing optimal strategies of the players.

In the theory of differential games, control functions are mainly subject to geometric, integral,
or mixed constraints [8, 23]. However, differential type constraints on controls also arise in some
applied problems such as ecological and technical problems [1, 24].

The present paper is also devoted to a simple pursuit-evasion differential game problem. We
propose Grönwall-type constraints on the players’ controls [13] for the pursuit-evasion differential
game. We find the optimal pursuit time and construct optimal strategies for the players.

1. Statement of the problem

There is a huge number of works where simple-motion differential games with geometric con-
straints on controls of the form

|u| ≤ ρ, |v| ≤ σ (1.1)

were studied. The first constraint in (1.1) means that any control function u(t), t ≥ 0, satisfies the
condition

‖u(·)‖∞ = ess sup
t≥0

|u(t)| ≤ ρ. (1.2)

In the present paper, we propose a new set of controls of the pursuer and evader described by
the following Grönwall-type constraints, respectively:

|u(t)|2 ≤ ρ2 + 2k

t
∫

0

|u(s)|2ds, t ≥ 0, (1.3)

and

|v(t)|2 ≤ σ2 + 2k

t
∫

0

|v(s)|2ds, t ≥ 0, (1.4)

where ρ and σ are given positive numbers and k is a given non-negative number.
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Let the dynamics of the pursuer x and the evader y be described by the following equations:

ẋ = u, x(0) = x0,

ẏ = v, y(0) = y0,
(1.5)

where x, y, x0, y0, u, v ∈ R
n, n ≥ 1, and x0 6= y0.

Definition 1. Functions u(·) =
(

u1(·), u2(·), . . . , un(·)
)

and v(·) =
(

v1(·), v2(·), . . . , vn(·)
)

sat-
isfying conditions (1.3) and (1.4) are called the controls of the pursuer and evader, respectively.

Denote by U and V the sets of all controls of the pursuer and evader, respectively. Pairs (x0, u(·)),
u(·) ∈ U, and (y0, v(·)), v(·) ∈ V, generate the following trajectories:

x(t) = x0 +

t
∫

0

u(s)ds, y(t) = y0 +

t
∫

0

v(s)ds

of the pursuer and evader, respectively.
We use the following statement.

Lemma 1 (Grönwall [13]). If

|ω(t)|2 ≤ α2 + 2k

t
∫

0

|ω(s)|2ds,

then |ω(t)| ≤ αekt, where ω(t), t ≥ 0, is a measurable function and α and k are non-negative
numbers.

By Lemma 1, if u(·) ∈ U and v(·) ∈ V, then

|u(t)| ≤ ρekt, |v(t)| ≤ σekt, t ≥ 0. (1.6)

It can be easily checked that the converse is not true, that is, inequalities (1.6) do not imply
inequalities (1.3) and (1.4). To define the notions of optimal strategies of the players and the
optimal pursuit time, we consider two games.

1.1. The minimax payoff of the game

Denote by B(x, r) the ball of radius r centered at a point x.

Definition 2. A continuous function

U(x0, y0, t, v), U : Rn × R
n × R+ ×B(O,σekt) → B(O, ρekt),

where O stands for the origin, is called a strategy of the pursuer.

Hence, at the current time t, the pursuer is allowed to know the initial states x0, y0, the current
time t, and the value of the evader’s control v(t).

Definition 3. We say that a strategy U = U(x0, y0, t, v) guarantees the completion of the
pursuit by time T (U) if, for any control of the evader v(t), t ≥ 0, we have x(τ) = y(τ) at some
time τ ∈ [0, T (U)], where (x(·), y(·)) is the solution of the initial value problem

ẋ = U(x0, y0, t, v(t)), x(0) = x0,

ẏ = v, y(0) = y0.
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We say that T (U) is a guaranteed pursuit time. Note that any number T ′, T ′ ≥ T (U), is also a
guaranteed pursuit time corresponding to the strategy U . Denote by T ∗(U) the exact lower bound
of the guaranteed pursuit times T (U) corresponding to the strategy U .

The pursuer tries to minimize the number T ∗(U) by choosing their strategy U while the evader
tries to maximize T ∗(U) by choosing their control v(·).

Definition 4. A strategy U0 is called an optimal strategy of the pursuer if T ∗(U) ≥ T ∗(U0)
for any strategy U of the pursuer. The number T ∗(U0) is called the minimax payoff of the game.

1.2. The maximin payoff of the game

Definition 5. A continuous function

V (x0, y0, t, x, y), V : Rn × R
n × R+ × R

n × R
n → B(O,σekt),

is called a strategy of the evader if the following initial value problem

ẋ = u, x(0) = x0,

ẏ = V (x0, y0, t, x, y), y(0) = y0,
(1.7)

has a unique solution (x(t), y(t)), t ≥ 0.

Definition 6. We say that a strategy V guarantees the evasion on the time interval [0, T (V ))
if, for any control u(t) of the pursuer, t ≥ 0, the condition x(t) 6= y(t) holds for all t ∈ [0, T (V )),
where (x(t), y(t)) is the solution of (1.7). The number T (V ) is called a guaranteed evasion time.

Denote by T∗(V ) the exact upper bound of numbers T (V ) corresponding to the strategy V . The
evader tries to maximize T∗(V ) by choosing their strategy V while the pursuer tries to minimize it
by choosing their control u(·). If T∗(V ) = ∞, we say that the evasion is possible.

Definition 7. A strategy V0 of the evader is called optimal if the inequality T∗(V ) ≤ T∗(V0)
holds for any strategy V of the evader. The number T∗(V0) is called the maximin payoff of the
game. If T ∗(U0) = T∗(V0), then this number is called the optimal pursuit time.

This paper is devoted to solving the following problems under Grönwall-type constraints on the
controls.

Problem 1. Construct optimal strategies of the pursuer and evader, and find the optimal pur-
suit time in the game.

Problem 2. Solve a “life-line” differential game.

2. The main result

In this section, we construct optimal strategies for the players and give a formula for the optimal
pursuit time.
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2.1. Construction of the ΠGr-strategy

To construct a strategy for the pursuer, we first assume that the pursuer knows t, x(t), y(t),
and v(t) at the current time t. After constructing the strategy, we abandon the information about
the current players’ positions x(t) and y(t).

Let x(t) 6= y(t), ξ = ξ(t) = z(t)/|z(t)|, and z(t) = x(t) − y(t). Based on the classical method
for deriving a Π-strategy (see, for example, [2, 20, 26, 28]), we assume that, for a constant vector
v ∈ R

n, the velocity u ∈ R
n is chosen so that the following relations hold:

u = v − λξ, (2.8)

|u|2 = |v|2 + δe2kt, (2.9)

where λ is a non-negative parameter and δ = ρ2 − σ2. Substituting (2.8) into (2.9), we obtain the
following equation for λ:

λ2 − 2λ〈v, ξ〉 − δe2kt = 0,

where 〈v, ξ〉 denotes the inner product of vectors v and ξ in R
n. To construct the strategy of the

pursuer, we use the following root:

λ(t, v, z) = 〈v, ξ〉+
√

〈v, ξ〉2 + δe2kt. (2.10)

Note that λ(t, v, z) is not necessarily positive for all v and z. We call the root (2.10) the
resolving function (see [7],[29]) and present some of its important properties.

Property 1. If δ ≥ 0, then the function λ(t, v, z) is continuous and non-negative for all
(t, v, z) ∈ [0,∞) × R

n × (Rn \ {0}).
Now, substituting the resolving function (2.10) into (2.8), we obtain

u(t, v, z) = v − λ(t, v, z)ξ (2.11)

that satisfies (2.9). Let z0 = x0 − y0, and let v(·) ∈ V be an arbitrary control of the evader. If the
pursuer applies strategy (2.11), then, by (1.5) and (2.11), the dynamics of the vector z is described
by the following initial value problem:

ż = ẋ− ẏ = −λ(t, v(t), z) z|z| , z(0) = z0. (2.12)

Obviously, for the initial value problem (2.12), the hypotheses of the Caratheodory existence the-
orem are satisfied if z 6= 0, and therefore it has a unique absolutely continuous solution (t, z(t)),
which starts from the point (0, z0) since z0 6= 0. The following statement justifies the term of
“parallel approach” for the strategy (2.11).

Lemma 2. For every z0, z0 6= 0, and v(·) ∈ V, there exists a scalar function Λ(·) such that
z(t) = z0Λ(t, v(·), z(·)).

P r o o f. We obtain from (2.12) that

żi = −λ(t, v(t), z)|z| zi, zi(0) = zi0,

where i = 1, 2, . . . , n and zi is a scalar coordinate of the vector z ∈ R
n. Then the latter differential

equation can be transformed to the form

zi(t) = zi0Λ(t, v(·), z(·)), Λ(t, v(·), z(·)) = exp

{

−
t

∫

0

1

|z(s)|λ(s, v(s), z(s))ds
}

.
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and the proof of Lemma 2 is complete. �

Lemma 3. If ρ ≥ σ, then the following equation holds for every z0, z0 6= 0 and v(·) ∈ V on
some time interval [0, t∗):

u(t, v(t), z(t)) = u(t, v(t), z0). (2.13)

P r o o f. The function λ(t, v, z) defined by (2.10) is homogeneous in z. Therefore, u(t, v, z)
is homogeneous in z. Hence, by Lemma 2, we obtain (2.13). This completes the proof of Lemma 3.�

By (2.13), the pursuer constructs their strategy based on the information about the current
time t, the value v(t), and the initial data z0, ρ, σ, k.

Definition 8. If ρ ≥ σ, then the function

uGr(t, v) = v − λGr(t, v)ξ0, λGr(t, v) = 〈v, ξ0〉+
√

〈v, ξ0〉2 + δe2kt, (2.14)

where ξ0 = z0/|z0|, is called the ΠGr-strategy of the pursuer in the game.

Note that

|uGr(t, v)|2 = |v|2 + δe2kt. (2.15)

2.2. Solution of the pursuit problem

Theorem 1. If ρ > σ, then the ΠGr-strategy guarantees the completion of the pursuit in the
game on the time interval [0, TGr], where

TGr =















1

k
ln

(

1 +
k|z0|
ρ− σ

)

, k > 0,

|z0|
ρ− σ

, k = 0.

P r o o f. Let v(·) ∈ V be an arbitrary control of the evader, and let the pursuer use the
ΠGr-strategy. Use equations (1.5) and (2.14) to get the following initial value problem:

ż = uGr(t, v(t)) − v(t) = −λGr(t, v(t))ξ0, z(0) = z0.

From this, we see that

z(t) = ΛGr(t, v(·))z0, (2.16)

where

ΛGr(t, v(·)) = 1− 1

|z0|

t
∫

0

λGr(s, v(s))ds.

We now study the behavior of the function ΛGr(t, v(·)) with respect to t. Using the definition
of the function λGr(t, v), we obtain

ΛGr(t, v(·)) ≤ 1− 1

|z0|

t
∫

0

[
√

δe2ks + 〈v(s), ξ0〉2 − |〈v(s), ξ0〉|]ds.
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The function f(t, w) =
√
δe2kt + w2−w, w ∈ R, is monotonely deceasing for every t ≥ 0. Hence,

by the inequality |〈v(t), ξ0〉| ≤ |v(t)| ≤ σekt, which follows from the latter inequality in (1.6), we
get

ΛGr(t, v(·)) ≤ 1− 1

|z0|

t
∫

0

[
√

δe2ks + σ2e2ks −
√
σ2e2ks]ds = ΦGr(t),

where

ΦGr(t) =











1− ρ− σ

k|z0|
(

ekt − 1
)

, k > 0,

1− (ρ− σ)t

|z0|
, k = 0.

Clearly, the function ΦGr(t) is monotonely decreasing on [0, TGr] and ΦGr(TGr) = 0. Consequently,
there exists a time t∗, 0 ≤ t∗ ≤ TGr, such that ΛGr(t

∗, v(·)) = 0, and hence, by (2.16), z(t∗) = 0.

Next, we prove the admissibility of strategy (2.14) for all t, t ≥ 0. Let v(·) ∈ V be an arbitrary
control of the evader. We obtain from (1.4) and (2.15) that

|uGr(t, v(t))|2 = |v(t)|2 + δe2kt ≤ σ2 + δe2kt + 2k

t
∫

0

|v(s)|2ds

= ρ2 + 2k

t
∫

0

(

|v(s)|2 + δe2ks
)

ds = ρ2 + 2k

t
∫

0

|uGr(s, v(s))|2ds,

and this completes the proof. �

Theorem 2. If ρ > σ, then, for any control of the pursuer, the evader’s strategy V (t) =
−σektξ0, t ≥ 0, guarantees the inequality x(t) 6= y(t) on the time interval [0, TGr).

P r o o f. Let 0 ≤ t < TGr. Then

〈x(t)− y(t), ξ0〉 = |y0 − x0| −
t

∫

0

〈v(s), ξ0〉ds +
t

∫

0

〈u(s), ξ0〉ds

≥ |y0 − x0|+ σ

t
∫

0

eksds− ρ

t
∫

0

eksds > 0.

Hence, x(t) 6= y(t), 0 ≤ t < TGr. This completes the proof. �

Theorems 1 and 2 allows us to conclude that TGr is the optimal pursuit time, the ΠGr-strategy
is an optimal strategy for the pursuer, and V (t) = −σektξ0 is an optimal strategy for the evader.

2.3. Solution of the evasion problem

We now consider the game from the evader’s point of view.

Theorem 3. If ρ ≤ σ, then the evasion is possible in the game.
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P r o o f. Let ρ ≤ σ and u(·) ∈ U. We suggest the evader to use the strategy V (t) = −σektξ0,
t ≥ 0. Obviously, V (·) ∈ V. Then, for any u(t), we obtain

|z(t)| ≥ |z0 −
t

∫

0

V (s)ds| −
t

∫

0

|u(s)|ds = |z0|+
t

∫

0

σeksds−
t

∫

0

|u(s)|ds.

Using the inequality |u(s)| ≤ ρekt, we obtain

|z(t)| ≥
{

|z0|+ (σ − ρ)(ekt − 1)/k, k > 0,

|z0|+ (σ − ρ)t, k = 0.

This implies that z(t) 6= 0, t ≥ 0. The proof of the theorem is complete. �

2.4. Life-line differential game

The book of R. Isaacs [20] contains specific game problems, which are discussed in detail
and proposed for further study. Among numerous examples considered in the book, the life-line
differential game (Problem 9.5.1) occupies a special place as an example of a differential game
with phase constraint. For the case when the controls of both the players are subject to geometric
constraints, this game has been rather comprehensively studied in the works of L.A. Petrosjan [26]
based on approximating measurable controls with the most efficient piecewise constant controls
that realize the parallel approach strategy. About further development see [3, 5, 12, 30–34].

Here we mainly study the game with phase constraints for the evader on a given subset M of
Rn, which is called the life line (of the evader). (Note that, in the case M = ∅, we have a simple
game.)

In the life-line differential game, the pursuer P aims to catch the evader E, i.e., to realize the
equality x(t) = y(t) for some t > 0, while E stays in the zone Rn \M. The aim of E is to reach the
zone M before the pursuer catches him or to keep the relation x(t) 6= y(t) for all t (t ≥ 0). Note
that M doesn’t restrict the motion of P . Further, we assume that initial positions x0 and y0 are
given such that x0 6= y0 and y0 6∈M.

Definition 9. A strategy uGr(v, t) of the player P is called winning on the interval [0, TGr] in
the lifeline game if, for every v(·) ∈ V, there exists some time t∗ ∈ [0, TGr] such that

(1) x(t∗) = y(t∗);

(2) y(t) 6∈M for t ∈ [0, t∗].

Definition 10. A control function v∗(·) ∈ V of the player E is called winning in the life-line
game if, for every u(·) ∈ U,

(1) there exists some time t (t > 0) such that y(t) ∈M and x(t) 6= y(t) for t ∈ [0, t); or

(2) x(t) 6= y(t) for all t ≥ 0.
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2.5. Dynamics of the attainability domain

Let conditions of Theorem 1 hold. We suppose that, at time t, t ≥ 0, the evader E moves from
a position y using the control vector

v(t) =
w − y

|w − y|σe
kt.

The pursuer P uses the strategy

uGr(t, v(t)) =
w − x

|w − x|ρe
kt

from a position x. Then w is a point where P should meet E and

|w − y| =
θ

∫

t

|v(s)|ds, |w − x| =
θ

∫

t

|uGr(s, v(s))|ds ⇒ |w − x|/ρ = |w − y|/σ,

where θ is time when x(θ) = y(θ) = w. We define the attainability domain for the evader E in the
following form:

AGr(x, y) =
{

w : |w − x| ≥ (ρ/σ)|w − y|
}

;

its boundary is know as Apollonius’ sphere. Writing the latter in the form |w − cGr| = RGr, one
can easily find the center cGr(x, y) and the radius of Apollonius’ sphere:

cGr(x, y) = (ρ2y − σ2x)/(ρ2 − σ2),

RGr(x, y) = ρσ|x− y|/|ρ2 − σ2|.

The pairs (x0, uGr(t, v(t)) and (y0, v(t)) generate the trajectories

x(t) = x0 +

t
∫

0

uGr(s, v(s))ds, y(t) = y0 +

t
∫

0

v(s)ds,

respectively. Then, for every (x(t), y(t)), t ∈ [0, θ], we construct the sets

AGr(t) = AGr(x(t), y(t)) =
{

w : |w − x(t)| ≥ (ρ/σ)|w − y(t)|
}

,

AGr(0) = AGr(x0, y0) =
{

w : |w − x0| ≥ (ρ/σ)|w − y0|
}

.

Theorem 4.

AGr(t) = x(t) + ΛGr(t)[AGr(0)− x0]

for t ∈ [0, θ], where θ = min{t : z(t) = 0}.

P r o o f. Since z(t) = ΛGr(t)z0, where ΛGr(t) = ΛGr(t, vt(·)) (see (2.16)), the relation w ∈
AGr(t)− x(t) is equivalent to

|w| ≥ (ρ/σ)
∣

∣w + ΛG(t)z0
∣

∣. (2.17)
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Obviously, it is sufficient to check (2.17) for t ∈ [0, θ) when ΛGr(t) > 0. Then (2.17) can be
written as

|Λ−1
Gr

(t))w| ≥ (ρ/σ)
∣

∣Λ−1
Gr

(t)w + z0
∣

∣

or
Λ−1
Gr

(t)w ∈ AGr(0) − x0.

The latter means that w ∈ ΛGr(t)[AGr(0) − x0]. Thus, we have the equivalence

AGr(t)− x(t) =
{

w : |w| ≥ (ρ/σ)
∣

∣w + ΛGr(t)z0
∣

∣

}

= ΛGr(t)[AGr(0)− x0],

hence the desired result follows. �

Theorem 5. Monotony of Apollonius’ sphere. The set AGr(t) is monotone with respect to the
inclusion for t ∈ [0, θ], i.e., if 0 ≤ t1 ≤ t2, then AGr(t1) ⊃ AGr(t2).

P r o o f. By the properties (1.6) and (2.14)–(2.15), we have

|uGr(t, v)|2 = |v|2 + δe2kt ≥ (ρ/σ)2|v|2 ⇒ |v − λGr(t, v)ξ0| ≥ (ρ/σ)|v|

or
∣

∣|z0|v − λGr(t, v)z0
∣

∣ ≥ (ρ/σ)|v||z0| ⇒
∣

∣w − λGr(t, v)x0
∣

∣ ≥ (ρ/σ)
∣

∣w − λGr(t, v)y0
∣

∣,

where w = |z0|v + λGr(t, v)y0. The latter relation is equivalent to

|z0|v + λGr(t, v)y0 ∈ λGr(t, v)AGr(0).

From this, the convexity AGr(0), and the properties of the support function (see [6])

F (A,ψ) = sup
w∈A

〈w,ψ〉,

we get
〈|z0|v, ψ〉 − λGr(t, v)F (AGr(0) − y0, ψ) ≤ 0

for all ψ, |ψ| = 1. Consequently,

〈

v − λGr(t, v)ξ0, ψ
〉

− 1

|z0|
λGr(t, v)F (AGr(0)− x0, ψ) =

d

dt
F (AGr(t), ψ) ≤ 0.

�

2.6. Solution of the life-line game

In the life-line game, the pursuer P aims to catch the evader E, i.e., to realize the equality
x(t) = y(t) for some t > 0, while E stays in the zone Rn \M. The aim of E is to reach the zone
M before the pursuer catches him or to keep the relation x(t) 6= y(t) for all t, t ≥ 0. Note that M
doesn’t restrict the motion of P .

Theorem 6. If ρ > σ and M
⋂

AGr(x0, y0) = ∅, then the ΠGr-strategy is winning.

P r o o f follows from Theorem 5. �

Theorem 7. If ρ > σ and M
⋂

AGr(x0, y0) 6= ∅, then there exists a control of the evader E,
which is winning.
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P r o o f. Let w ∈M
⋂

AG(x0, y0), and let E hold the control v∗(t) = σektν, v∗(·) ∈ V, where
ν = (w − y0)/|w − y0|. Then the time of reaching by the evader the point w is θ̄, and we have

θ̄
∫

0

|v∗(s)|ds = |w − y0| ⇒ ϕ(θ̄) := (ekθ̄ − 1)/k = |w − y0|/σ, (2.18)

where ϕ(t) = (ekt − 1)/k increases in t. We suppose that there exists a certain control function
u∗(·) ∈ U of the pursuer such that x(t̄) = y(t̄) and t̄ < θ̄ or ϕ(t̄) < ϕ(θ̄). If z(t) = x(t)− y(t) and
z(0) = z0, then, from (1.5), we get

z(t̄) = z0 +

t̄
∫

0

(u∗(s)− v∗(t))ds = 0.

It follows that

|z0 −
t̄

∫

0

v∗(t)ds| ≤
t̄

∫

0

|u∗(s)|ds ≤ ρϕ(t̄) ⇒ (ρ2 − σ2)ϕ2(t̄) + 2σ〈z0, ν〉ϕ(t̄)− |z0|2 ≥ 0.

Hence, we get

ϕ(t̄) ≥ (
√

σ2〈z0, ν〉2 + |z0|2(ρ2 − σ2)− σ〈z0, ν〉)/(ρ2 − σ2). (2.19)

Since w ∈ AG(x0, y0), we have

|w − x0| ≥ (ρ/σ)|w − y0| ⇒ |z0 − (w − y0)|2 ≥ (ρ/σ)2|w − y0|2 ⇒

|z0|2 − 2〈z0, w − y0〉+ |w − y0|2 ≥ (ρ/σ)2|w − y0|2 ⇒

|z0|2 ≥
|w − y0|2

σ2
(ρ2 − σ2) + 2|w − y0|〈z0, ν〉 ⇒

σ2〈z0, ν〉2 + |z0|2(ρ2 − σ2) ≥ |w − y0|2
σ2

(ρ2 − σ2)2 + 2|w − y0|(ρ2 − σ2)〈z0, ν〉+ σ2〈z0, ν〉2 ⇒

σ2〈z0, ν〉2 + |z0|2(ρ2 − σ2) ≥
[

|w − y0|(ρ2 − σ2)/σ + σ〈z0, ν〉
]2 ⇒

√

σ2〈z0, ν〉2 + |z0|2(ρ2 − σ2) ≥ |w − y0|(ρ2 − σ2)/σ + σ〈z0, ν〉 ⇒
(

√

σ2〈z0, ν〉2 + |z0|2(ρ2 − σ2)− σ〈z0, ν〉
)

/(ρ2 − σ2) ≥ |w − y0|/σ = ϕ(θ̄).

Then, from (2.18)–(2.19), we get ϕ(t̄) ≥ ϕ(θ̄) or t̄ ≥ θ̄, which contradict our assumption. �

Theorem 8. If σ ≥ ρ, then there exists a control of the evader E, which is winning in the
life-line game.

P r o o f follows from Theorem 3. �



106 Bahrom T. Samatov, Gafurjan Ibragimov, Iroda V. Khodjibayeva

3. Conclusion

In the present paper, we have studied a simple pursuit-evasion differential game of one pur-
suer and one evader. We have proposed Grönwall-type constraints on the players’ controls and
constructed the ΠGr-strategy for the pursuer. We have shown that the ΠGr-strategy is an optimal
strategy for the pursuer. Also, we have constructed an optimal strategy for the evader and found
the optimal pursuit time. The results obtained show that the optimal strategies U and V of the
players satisfy the conditions |U | = ρekt and |V | = σekt, respectively. For the completeness of the
results, we have also studied an evasion life-line game.

There is a large scope for further investigations. For example, differential games of many players
with Grönwall-type constraints on the players’ controls can be studied.
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