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Abstract: An important theorem in stochastic finance field is the martingale representation theorem. It is
useful in the stage of making hedging strategies (such as cross hedging and replicating hedge) in the presence
of different assets with different stochastic dynamics models. In the current paper, some new theoretical results
about this theorem including derivation of serial correlation function of a martingale process and its conditional
expectations approximation are proposed. Applications in optimal hedge ratio and financial derivative pricing
are presented and sensitivity analyses are studied. Throughout theoretical results, simulation-based results are
also proposed. Two real data sets are analyzed and concluding remarks are given. Finally, a conclusion section
is given.
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1. Introduction

The martingale representation theorem states that any martingale adapted with respect to a
Brownian motion can be expressed as a stochastic integral with respect to the same Brownian
motion. It has many applications in construction hedging strategies for various types of assets
with different stochastic dynamics, see [1]. In the current note, the time series features of this
important theorem are proposed. Before going future, an important lemma is proposed. Let Bt

be the standard Brownian motion on (0,∞) and Ft is the sigma-field constructed by history of Bs,
s ≤ t, i.e. Ft = σ{Bs|s ≤ t}. Hence, if s ≤ t; then Fs ⊆ Ft. Indeed, Ft is the augmented filtration
generated by standard Brownian motion Bt. Also, assume that X,Y are the future values of two
stochastic processes at some known future time T . According to the martingale representation
theorem, it is necessary to assume that both of X,Y are squared integrable random variables with
respect to F∞ to use this theorem for X and Y (see, [1]). These assumptions are kept fixed for all
further discussions of the paper.

Lemma 1. Sentences (a) and (b) are correct :

(a) The correlation ρxy between X,Y , is given as follows

ρxy =

∫ T

0
E(usvs)ds

√

∫ T

0
E(u2s)ds

∫ T

0
E(v2s )ds

,

here us and vs are two predictable processes used in martingale representation theorem applied

to X, Y , respectively.
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(b) Suppose that E(X|Y = y) = ay + b, E(Y |X = x) = cx+ d. Then,











µx = aµy + b, µy = cµx + d,

ρ2xy = ac,
σ2
x

σ2
y

=
a

c
,

where µA and σ2
A are the mean and variance of A = X,Y , respectively.

P r o o f. (a) The martingale representation theorem implies that (see [2]) there exist two
predictable processes ut, vt such that















X = E (X) +

∫ T

0
usdBs,

Y = E (Y ) +

∫ T

0
vsdBs.

For a review in stochastic calculus, see [7]. It is easy to see that

E
[

∫ T

0
usdBs

]

= E
[

∫ T

0
vsdBs

]

= 0.

By multiplying above two equations and taking expectation, it is seen that

E (XY ) = E (X)E (Y ) + E (X)E
[

∫ T

0
vsdBs

]

+ E(Y )E
[

∫ T

0
usdBs

]

+E

∫ T

0

∫ T

0
usvtdBsdBt.

Notice that [7]

E

∫ T

0

∫ T

0
usvtdBsdBt =

∫ T

0
E (usvs) ds.

Hence, it is seen that covariance between X and Y, i.e., σxy = cov (X,Y ) is given by

σxy =

∫ T

0
E (usvs) ds.

Also, using the Ito isometric lemma (see [7]), it is seen that

E
(

X2
)

= (E (X))2 +

∫ T

0
E
(

u2s
)

ds.

Therefore,

σ2
x = varX =

∫ T

0
E
(

u2s
)

ds.

Similarly,

σ2
y =

∫ T

0
E
(

v2s
)

ds.

Thus, the proof is complete.

(b) The proof is straightforward by using the iterated expectation law (see [2]). Therefore it is
omitted. �
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Example 1. Here, to give an example for assumption of part (b), a special case is considered.
For a specific t, h > 0, let X be a martingale with respect to Ft, then according to the martingale
representation theorem, we have

X = Xt =

∫ t

0
usdBs + E(X).

Here, E(X) is constant and independent of t. Let Y = Xt+h. For special case, suppose that us is
a deterministic real-valued function. Then,

Γ = Y −X =

∫ t+h

t
usdBs.

Clearly, Xt is an independent increment process and Γ has a normal distribution with zero mean

and variance

∫ t+h

t
u2sds. Notice that

(

X
Y

)

is a linear combination of

(

X
Γ

)

as follows

(

X
Y

)

=

(

X
X + Γ

)

=

(

1 0
1 1

)(

X
Γ

)

,

and since

(

X
Γ

)

has a joint normal distribution with mean vector

(

E (X)
0

)

and covariance matrix

(

σ2
X 0
0 σ2

Γ

)

,

therefore,

(

X
Y

)

has a joint distribution with mean vector

(

E (X)
E (X)

)

and covariance matrix

(

σ2
X σ2

X

σ2
X σ2

X + σ
2
Γ

)

.

Here,

σ2
X =

∫ t

0
u2sds, σ2

Γ
=

∫ t+h

t
u2sds.

The correlation between X, Y is

ρxy =
σ2
X

√

σ2
X(σ2

X + σ
2
Γ
)
=

(

1 +
σ2
Γ

σ2
X

)

−0.5

.

Thus (see [6])

E (X | Y ) = E (Xt | Xt+h) = E (X) + ρxy
σX
σY

(Y − E (X)) = E (X) +

(

1 +
σ2
Γ

σ2
X

)

−1

(Y − E (X)) .

Also, notice that E (Xt+h | Xt) = Xt. Hence, the parameters of a, b, c, and d of the theorem are

a =

(

1 +
σ2
Γ

σ2
X

)−1

, b = (1− a)E(X), c = 1, d = 0.

The rest of the paper is organized as follows. In the next section the application of above Lemma 1
in deriving optimal hedge ratio is discussed. Section 3 uses the (b) of Lemma 1 to approximate
the conditional mean and it is applied to financial derivative pricing. Simulation results is given
throughout theoretical sections. Real data sets analysis are given in Section 4. Finally, a Conclusion
section is given.
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2. Optimal hedge ratio

Here, the application of above discussion in portfolio management is discussed. The cross
hedging procedure is the construction of an almost riskless portfolio by using one unit of the first
asset X in long position and h units of Y in short position (at the maturity) (see [4]).

Let Z = X − hY be the value of portfolio at maturity T . The variance of Z is given by

σ2
z = σ2

x + h2σ2
y − 2hσxy.

By minimizing σ2
z with respect to h, it is seen that the optimum hedge ratio hopt is given by

hopt =
σxy
σ2
y

=

∫ T

0
E (usvs) ds

∫ T

0
E
(

v2s
)

ds

.

Hence, the optimum value of portfolio at maturity is

Z = X − hoptY = E (X)− hoptE (Y ) +

∫ T

0
(us − hoptvs) dBs.

The variance of Z at maturity is σ2
x(1− ρ2xy).

Next, suppose that the risk free interest rate is zero, then the value of X,Y at maturity T is
the following (see [2])















Xt = E(X|Ft) = E (X) +

∫ t

0
usdBs,

Yt = E(Y |Ft) = E (Y ) +

∫ t

0
vsdBs.

Consider the self-financed portfolio Zt = Xt −HtYt (see [7]). Assume that Ht = ut/vt. Notice that

dZ = dX −HdY = (u−Hv) dB.

Then, dZ = 0. Thus, Z is constant. Indeed, Z = E (X)−HE (Y ) . Hence,

Xt −HtYt = E (X)−HtE (Y ) .

Hence,

Ht =
Xt − E (X)

Yt − E (Y )
.

The following proposition summarizes the above discussion.

Proposition 1. Sentences (a) and (b) are correct.

(a) Under the martingale representation, the optimum hedge ratio for cross hedging X by Y , is

given by

hopt =
σxy
σ2
y

=

∫ T

0
E (usvs) ds

∫ T

0
E
(

v2s
)

ds

.

(b) The replicating ratio for rebalancing portfolio the dynamic hedging portfolio is

Ht =
Xt − E (X)

Yt − E (Y )
.
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P r o o f. See the above discussions. �

Next, consider the martingale representation theorem as follows

Xt = E(X|Ft) = E(X) +

∫ t

0
usdBs.

Let G(t) = E(u2t ) and g(t) = log (G (t)) and g′ be its first derivative. According to Lemma 1, (a)
and Ito isometric lemma, the correlation coefficient ρt(h) between Xt+h,Xt is given by

ρt(ht) =

√

G(t)

G(t+ h)
=

1
√

1 + h/G(t) ×
(

G(t+ h)−G(t)
)

/h
.

As h → 0+, then ρt(h) is well-approximated by 1/
√

1 + hg′(t). The second term g′′(t) could be
added to mentioned approximation, which is not necessary in practice.

3. Conditional mean approximation

Here, using the second part of Lemma 1, the conditional mean of E(Xt|Xt+h) is approximated
and then its financial application is seen.

3.1. Approximation

Notice that one can see that Xt is a martingale with respect to filtration Ḟt, the σ-field generated
by Xs, s ≤ t. Next, assume that the conditional expectation of E(Xt|Xt+h) is well-approximated
by linear combination aXt+h + b. Then, using the Lemma 1, (b), it is seen that ρ2t (h) = a,
b = µ(1− ρ2t (h)), where µ = E (X) = E(Xt). Therefore,

E (Xt | Xt+h) = µ+ ρ2t (h) (Xt+h − µ) ,

where ρ2t (h) = 1/(1 + hg′(t)). The following proposition summarizes the above discussion.

Proposition 2. Assuming E(Xt|Xt+h) is well-approximated by a linear function of Xt+h, then

E(Xt|Xt+h) = µ+ ρ2t (h)(Xt+h − µ),

where µ = E(X) = E(Xt) and ρt(h) = 1/
√

1 + hg′(t). Here, G (t) = E(u2t ) and g (t) = log(G (t))
and g′ be its first derivative.

P r o o f. See the above discussions. �

Example 1 (cont.). Here, it is shown that the formula of example 1 corresponds to the approx-
imation of Proposition 2, as h → 0. Define

κ(t) =

∫ t

0
u2sds.

Thus, σ2
X = κ(t) and σ2

Γ
= κ (t+ h)− κ(t) ≈ hκ′(t). Hence,

ρxy =
1

√

1 + hκ′(t)/κ(t)
,

this is exactly equal to the approximation formula of Proposition 2.

Remark 1. Here some sensitivity analysis are discussed. Indeed, we have the following proper-
ties.
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(a) As h → 0, then ρt (h) → 1 which is clear (since the correlation of each variable with its-self
is one). As h → ∞, then ρt (h) → 0 which is clear since Xt+h and Xt are enough far from
each others. Also,

∂ρ

∂h
= −0.5g′ (t) (1 + hg′ (t))−3/2

which converges to the −0.5g′ (t), as h → 0. When h → ∞, then ∂ρ/∂h goes to zero which
is clear since the variation of ρt (h) is too small at infinity.

(b) It is easy to see that
∂ρ

∂t
= −0.5hg′′(t)(1 + hg′(t))−3/2.

Example 2. Let us = 2Bs, then Xt = B2
t − t is a martingale. Indeed,

G (t) = 4t, g′ (t) =
1

t
, ρt (h) =

√

t

t+ h
.

For example, when t = 0.1, 0.5, the following Fig. 1 shows the behavior of

ρ0.5 (h) =

√

1

1 + 2h
, ρ0.1 (h) =

√

1

1 + 10h
, h ∈ (0, 1),

respectively. As more t → 0, then the curvature of ρt (h) is more close to the horizontal axis. Notice
that

∂ρ

∂t
=

h√
t(t+ h)2

→ 0 as t → ∞.

It is clear because as t → ∞ or t → 0, then ρt (h) → 1 and its variation is too small. This is an
interesting phenomena that as t gets large, then correlation B2

t with its future values is large for
each h. For special case, when h = t, then ρt (h) =

√
2/2.

Also, let h = q(t), for some real valued function q, and suppose that q(t)/t converges to α (β)
as t → 0 (t → ∞), then ρt (h) tends to 1/

√
1 + α (1/

√
1 + β). Fig. 1 shows the behavior of ρ0.1 (h)

and ρ0.5 (h) which verifies the above discussion. For another example, as extension of Brownian
motion, consider the Ornstein–Uhlenbeck process Ut defined by

dU = −αUdt+ σdB.

The Ito lemma implies that X = Xt = eαtUt satisfies the stochastic differential equation

dX = σeαtdB

which is martingale with respect to Ft. Using the Example 1, it is seen that

σ2
x =

∫ t

0
σ2e2αsds =

σ2

2α
(e2α(t+h) − 1)

and

σ2
Γ
=

σ2

2α
(e2α(t+h) − e2αt).

It is seen that
E(Xt|Xt+h) = aXt+h + b

where

a =

(

1 +
σ2
Γ

σ2
X

)−1

, b = (1− a)E(X).
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Figure 1. Plots of ρ0.1 (h) and ρ0.5 (h).

Equivalently,

E(Ut|Ut+h) = aeαhUt+h + b, E(Ut+h|Ut) = e−αhUt.

From Dambis, Dubins–Schwarz (DDS) theorem (see [5, p. 204]), it is seen that

Ut = e−αhB̃

(

σ2(e2αt − 1)

2α

)

,

where B̃ is another Brownian motion. Again, using the results of the previous example, the same
results are obtained. Using the results of Remark 1, part (b), it is seen that

g (t) = log

(

σ2

2α

)

+ log(e2αt − 1).

Then,

g′′(t) =
−4α2e2αt

(e2αt − 1)2
→ 0, as t → ∞.

Hence,
∂ρ

∂t
→ 0 as t → ∞.

3.2. Pricing

In this section, the application of above approximation in pricing of financial derivative is
studied. Consider the price of financial derivative f at time t which expires at maturity T (t ≤ T )
written on a given underlying financial asset. Then,

ft = e−r(T−t)EQ(fT |Ft)
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where r,Q, T, and Ft are risk free rate, risk neutral probability measure, maturity of financial
derivative and the σ-field of price time series su, u ≤ t, (see [7]). Here, under the risk neutral
probability measure, the dynamic of price of underlying asset is given by

ds = rsdt+ σdB

at which σ is volatility of price. According to the Black–Scholes formula, the price of financial
derivative satisfies the partial differential equation

∂f

∂t
+ rs

∂f

∂s
+

σ2s2

2

∂2f

∂s2
= rf.

Let Xt = e−rtft. Then, using the Ito lemma, it is seen that

dX = e−rt ∂f

∂s
σsdB.

Then,

X = EQ

(

e−rT fT
)

+

∫ t

0
e−ru∂f

∂s
σsdBu.

Thus,

ct = e−rt ∂f

∂s
σs = σe−rts∆,

where ∆ is the Greek letter delta representing the sensitivity parameter of financial derivative with
respect to variation of s. Notice that

G (t) = e−2rtσ2EQ(∆
2s2)

and
g (t) = −2rt+ log

(

σ2
)

+ l(t)

where l (t) = log (EQ

(

∆2s2
)

) and g′ (t) = −2r + l′(t) and

ρt (h) =
1

√

1 + h(−2r + l′ (t))
.

In practice, the quantity EQ

(

∆2s2
)

is approximated using a Monte Carlo simulation. The following
proposition summarizes the above discussion.

Proposition 3. For the financial derivative with price ft then the correlation coefficient

ρt(h) between ft+h, ft is given by

ρt(h) =
1

√

1 + h(−2r + l′(t))
,

where l (t) = log (EQ

(

∆2s2
)

) and g′ (t) = −2r + l′(t).

P r o o f. The result is a direct consequence of previous discussions. �

Remark 2. Hereafter, the sensitivity analysis of ρt (h) to its parameters σ, h is verified. For
trivial derivative we have f = s, then ∆ = 1, and under the risk neutral measure Q, we have

ds = rsdt+ σsdB.

The solution is
st = s0e

(r−σ2/2)t+σBt .

Thus, EQ

(

∆2s2
)

= EQ

(

s2
)

= s20e
2rt+σ2t and g′ (t) = σ2 and ρt (h) = 1/

√
1 + hσ2 independent

of t. As σ → ∞ (0), then ρt (h) tends to the 0 (1). If h = 1/σ2, so ρt (h) =
√
2/2.
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4. Real data sets

In this section, throughout real data sets the computational aspects of above theoretical results
are studied.

Example 3. In this example, the application of the formula for backward forecasting of daily
stock price of Apple co. for period of 3 December 2019 to 2 December 2020 (including 254 obser-
vations) is studied. Backward forecasting is useful for checking the correctness of guess of traders
about future price of a specified share (see [3]). According to the Proposition 2, the backward
forecasting in a martingale process is given as follows:

E (Xt | Xt+h) = µ+ ρ2t (h) (Xt+h − µ) .

As follows, error analyses is given to verify the accuracy of the above formula. Using the first 80
percent of data set (i.e., 202 observations, dated from 3 December 2019 to 21 September 2020), the
following Ito process if fitted to the Apple co. stock price,

ds = 0.003sdt + 0.0305sdB,

which has solution
s = 64.31e0.00254t+0.0305B .

Here,
Xt = e0.0305B−0.03052t/2

is martingale, and
s = 64.31Xte

0.003t.

Hence, substituting this equation to the conditional mean approximation, we see

E (st | st+h) = 64.31µe0.003t
(

1− ρ2t (h)
)

+ e−0.003tρ2t (h) st+h,

where

µ = 1, ut = σe0.0305B−0.03052t/2, G (t) = (0.0305)2e(0.0305)
2t,

g′(t) = (0.0305)2 , ρt(h) =
1

√

1 + h(0.0305)2
.

Next, assuming observations 21 September 2020 to 2 December 2020 are known this is the assump-
tion of the trader about the future, the available data (data for 3 December 2019 to 21 September
2020) are forecasted, backwardly. Here, we used the remaining 20 percent of data, as trader con-
jecture about future. However, in practice, he may used own dada obtained by his techniques for
fundamental analysis. The following Fig. 2 gives the error obtained by different actual and back-
ward forecast for period of 3 December 2019 to 21 September 2020. It is seen that trader guess
about future is true.

Example 4. In this example, the daily stock prices of Amazon co. for period of 2 October 2017
to 30 September 2019 (including 502 observations) are studied. It is seen that σ = 0.0199, r = 0.05
per year and s0 = 959.19. Consider a call option with strike price k = 970, with maturity T = 1
(12 months) and European type. The delta parameter is

∆ = Φ (d1) , d1 =
log (s/k) +

(

r + 0.5σ2
)

(T − t)

σ
√
T − t

.
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Figure 2. Time series plot of error.

Here, Φ is the normal standard distribution function. The following Fig. 3 shows the ρt (0.2),
ρt (2) for various values of t. To simulate l(t), a Monte Carlo simulation with 1000 repetitions is
performed. Also, the variance reduction method is applied. It is seen that as h becomes large
then, naturally, ρt (h) becomes small. As follows, the Black-Scholes (BS) price of a call option
is compared with the approximate price. Also, ∆ is an important sensitivity Greek letter to
obtain a riskless portfolio. Then, actual ∆ is compared with its approximation. Based on these
comparisons, the following table is derived. Here, min, qi, i = 1, 2, 3, and max are the minimum,
the first, second, third quartiles and the maximum of errors (differences between BS price and ∆,
with their approximations), respectively. It is seen that the approximation works well.

Table 1. Measures of errors.

min q1 q2 q3 max

Price −2.59 −1.31 0.88 1.27 2.68

∆ −0.35 −0.12 −0.01 0.17 0.25

5. Conclusion

In this paper, first, the correlation between two stochastic processes, satisfying the martingale
representation theorem format, are derived. This correlation is used to obtain the optimal hedge
ratio in a portfolio where two assets have the above mentioned stochastic process behaviors. Then,
the results are developed to the serial correlation between a stochastic process and its lags. Then,
this serial correlation is approximated. Sensitivity analyses of serial correlation to the time and
lags and the parameters of underlying stochastic processes are studied and some interesting results
about the relationship of process to its lags in long term (when t tends to ∞) are proposed. Using
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Figure 3. Plots of ρt (0.2) , ρt (2).

the serial correlation, the backward forecast of price of financial assets such as share, equity, stocks
or financial derivatives are presented. Forecasts are done using the backward conditional which is
well approximated. Throughout, simulated examples and real data sets applicability of proposed
methods are seen.
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