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Abstract: The reachable sets of nonlinear systems are usually quite complicated. They, as a rule, are
non-convex and arranged to have rather complex behavior. In this paper, the asymptotic behavior of reachable
sets of nonlinear control-affine systems on small time intervals is studied. We assume that the initial state of
the system is fixed, and the control is bounded in the L2-norm. The subject of the study is the applicability
of the linearization method for a sufficiently small length of the time interval. We provide sufficient conditions
under which the reachable set of a nonlinear system is convex and asymptotically equal to the reachable set
of a linearized system. The concept of asymptotic equality is defined in terms of the Banach-Mazur metric
in the space of sets. The conditions depend on the behavior of the controllability Gramian of the linearized
system — the smallest eigenvalue of the Gramian should not tend to zero too quickly when the length of the
time interval tends to zero. The indicated asymptotic behavior occurs for a reasonably wide class of second-
order nonlinear control systems but can be violated for systems of higher dimension. The results of numerical
simulation illustrate the theoretical conclusions of the paper.

Key words: Nonlinear control systems, Small-time reachable sets, Asymptotics, Integral constraints, Lin-
earization.

1. Introduction

The paper explores the properties of reachable sets of control-affine nonlinear systems with
integral constraints over small time intervals. The geometric structure of reachable sets plays an
important role in control theory, in particular, in solving problems of control synthesis. Small-
time reachable sets under pointwise (geometric) constraints on control were studied by C. Lobry,
H. Sussmann, A. J.Krener, H. Schattler, and C. I. Byrnes (see, for example, [12, 19]). In general,
the reachable sets of nonlinear systems are not convex and may have a quite complicated structure
[1, 3, 11, 13–15, 20, 21]. When some of the parameters of a control system are small (initial
deviations from the equilibrium position, disturbances at the input of the system, etc.), the behavior
of the system can often be judged by the action of its linear approximation. Here we find out under
what conditions this linearization approach is applicable when constructing reachable sets on small
time intervals. Will these sets be close to reachable sets of a linearized system? In this paper,
we study reachable sets for control-affine systems on small time intervals with integral quadratic
constraints on the controls. Reachable sets of nonlinear systems with integral constraints were
studied in [5–7, 16]. If a system is linear, its reachable set is an ellipsoid in the state space.
Therefore, an ellipsoid is the reachable set of a linearized system. To establish the proximity
of the reachable sets of original and linearized systems, it is necessary first to find out in which
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cases the reachable set of the original nonlinear system is convex. B. Polyak [17] proved that a
nonlinear image of a small ball in a Hilbert space is convex under some regularity assumptions on
the mapping. Using this result, he showed that reachable sets of a nonlinear control system are
convex if constraints on the control are given by a ball of a sufficiently small radius in L2 and the
linearized system is controllable [16]. Using a time change, we reduce the problem of constructing
the reachable set of a system on a small time interval to a similar problem on a unit interval.
With this replacement, the integral constraints are given by a ball of small radius, and we apply
Theorem 1 from [17] to propose sufficient conditions for the convexity of small-time reachable sets.
The application of these conditions requires a study of the asymptotic behavior of the controllability
Gramian of the linearized system depending on a small parameter.

Another question is how to evaluate the degree of proximity of reachable sets for small lengths
of time intervals. These sets contract to a single-point set as the interval length tends to zero,
so the Hausdorff metric is not enough for this purpose. Here we use the concept of asymptotic
equality of sets introduced in [4] and based on the Banach–Mazur metric.

The paper is arranged as follows. In Section 1, we introduce the concept of asymptotic equality
of sets using the Banach–Mazur metric. We prove several auxiliary statements concerning the
connection of this concept with the properties of support functions. In Section 2, we consider
relations between the images of a Hilbert ball under nonlinear mapping depending on a small
parameter and under its linear approximation. Further, we apply these results to the study of the
asymptotic behavior of the reachable sets of nonlinear systems with integral control constraints.
We formulate sufficient conditions for the asymptotic equality of reachable sets of nonlinear and
linearized systems. These conditions depend on the asymptotic behavior of the controllability
Gramian of the linearized system. The asymptotic behavior of the smallest eigenvalue of the
controllability Gramian for a time-invariant linear control system with a single input is studied
in Section 3. In Section 4, we apply the obtained asymptotics to the study of reachable sets
for affine-control nonlinear systems on a small time interval. We give two examples of nonlinear
two-dimensional systems and present the results of numerical simulations.

2. Asymptotic equality of sets

Let X,Y ⊂ R
n be convex compact sets. We assume that the zero vector is an interior point

of each of these sets. The Banach–Mazur distance ρ(X,Y ) between X and Y is defined by the
equality

ρ(X,Y ) := log
(

r(X,Y ) · r(Y,X)
)

, r(X,Y ) = inf
{

t ≥ 1 : tX ⊃ Y
}

.

For convex closed sets X and Y , the inclusion tX ⊃ Y holds if and only if

tδ(y|X) ≥ δ(y|Y ), ∀y ∈ R
n, ‖y‖ = 1,

where δ(y|X) is the support function of the set X:

δ(y|X) := sup
{

(y, x) : x ∈ X
}

, y ∈ R
n.

Hence, we have the formula

r(X,Y ) = max

{

1, sup
‖y‖=1

δ(y|X)

δ(y|Y )

}

. (2.1)

Note that, due to the condition 0 ∈ intY , the inequality δ(y|Y ) > 0 holds for ‖y‖ 6= 0.
Suppose further that the sets under consideration depend on a small positive parameter ε,

X = X(ε) and Y = Y (ε) are convex compact sets, and the zero vector is an interior point of each
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of these sets for 0 < ε ≤ ε0. We also assume that the multivalued mappings X(ε) and Y (ε) are
bounded. The sets X(ε) and Y (ε) are called asymptotically equal [4] if ρ(X(ε), Y (ε)) → 0 as ε → 0.

We use the notation

∆XY (y, ε) :=
δ(y|X(ε))

δ(y|Y (ε))
, ∆Y X(y, ε) :=

δ(y|Y (ε))

δ(y|X(ε))
.

Formula (2.1) implies the following statement.

Lemma 1. In order to ρ(X(ε), Y (ε)) → 0 as ε → 0, it is necessary and sufficient that

lim
ε→0

∆XY (y, ε) = 1 uniformly in y, ‖y‖ = 1. (2.2)

P r o o f. It follows from (2.2) that limε→0 sup‖y‖=1 ∆XY (y, ε) = 1. Since ∆XY (y, ε) ·
∆Y X(y, ε) = 1, we have limε→0 sup‖y‖=1 ∆Y X(y, ε) = 1. From formula (2.1), we find that
r(X(ε), Y (ε)) → 1 and r(Y (ε),X(ε)) → 1; therefore, ρ(X(ε), Y (ε)) → 0 as ε → 0.

To prove the necessity of condition (2.2), suppose, on the contrary, that this condition is vio-
lated. Then there exist 1 > σ > 0 and a sequence εk → 0 such that the following relations are valid
for an infinite number of the sequence terms:

sup
‖y‖=1

∆XY (y, εk) ≥ 1 + σ or sup
‖y‖=1

∆XY (y, εk) ≤ 1− σ.

In the former case, we have r(X(εk), Y (εk)) ≥ 1+σ and, therefore, ρ(X(εk), Y (εk)) ≥ log(1+σ) > 0.
In the latter case, we obtain

∆XY (y, εk) ≤ 1− σ, ∀y, ‖y‖ = 1,

and hence

sup
‖y‖=1

∆Y X(y, εk) ≥
1

1− σ
.

This implies that

ρ(X(εk), Y (εk)) ≥ log
(

1 +
σ

1− σ

)

> 0

for an infinite number of the sequence terms εk. This contradicts the convergence of ρ(X(εk), Y (εk))
to zero. �

The condition ρ(X(ε), Y (ε)) → 0 implies that h(X(ε), Y (ε)) → 0 as ε → 0, where h denotes
the Hausdorff distance between the sets. Indeed, by Lemma 1, relation (2.2) holds in this case.
Therefore, for any σ > 0, there exists ε̄ such that the inequalities

∆XY (y, ε) ≤ 1 + σ, ∆Y X(y, ε) ≤ 1 + σ

hold for all y ∈ R
n, ‖y‖ = 1, 0 < ε ≤ ε̄. These inequalities imply the estimate

h(X(ε), Y (ε)) = sup
‖y‖=1

∣

∣δ(y|X(ε)) − δ(y|Y (ε))
∣

∣ ≤ σmax
{

sup
‖y‖=1

δ(y|Y (ε)), sup
‖y‖=1

δ(y|X(ε))
}

,

which means that h(X(ε), Y (ε)) → 0 as ε → 0.
The converse is not true, as the following example shows. Let

X(ε) =
{

x ∈ R
2 : |x1| ≤ ε, |x2| ≤ ε

}

, Y (ε) =
{

x ∈ R
2 : x21 + x22 ≤ ε2

}

.

Then h(X(ε), Y (ε)) = (
√
2 − 1)ε → 0 and ρ(X(ε), Y (ε)) = log

√
2 > 0. Nevertheless, under the

additional assumption about the rate of convergence of the Hausdorff distance between the sets,
we prove in Theorem 1 that ρ(X(ε), Y (ε)) → 0 as ε → 0.

For A ⊂ R
n, define δmin(A) := inf‖y‖=1 δ(y|A).
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Theorem 1. The following conditions are sufficient for ρ(X(ε), Y (ε)) → 0 as ε → 0:

lim
ε→0

h(X(ε), Y (ε)) = 0, lim
ε→0

h(X(ε), Y (ε))

δmin(Y (ε))
= 0.

P r o o f. Let h(ε) = h(X(ε), Y (ε)) and δ(ε) = δmin(Y (ε)). From the equality

h(ε) = h(X(ε), Y (ε)) = sup
‖y‖=1

∣

∣δ(y|X(ε)) − δ(y|Y (ε))
∣

∣,

it follows that
−h(ε) ≤ δ(y|X(ε)) − δ(y|Y (ε)) ≤ h(ε)

for all y ∈ R
n, ‖y‖ = 1. Dividing these inequalities by a positive value δ(y|Y (ε)), we get

∣

∣

∣

∣

sup
‖y‖=1

δ(y|X(ε))

δ(y|Y (ε))
− 1

∣

∣

∣

∣

≤ sup
‖y‖=1

h(ε)

δ(y|Y (ε))
≤ h(ε)

δ(ε)
.

Dividing these inequalities by δ(y|X(ε)) and taking into account that, in view of the conditions of
the theorem, δmin(ε)− h(ε) > 0 for sufficiently small ε, we get

∣

∣

∣

∣

sup
‖y‖=1

δ(y|Y (ε))

δ(y|X(ε))
− 1

∣

∣

∣

∣

≤ sup
‖y‖=1

h(ε)

δ(y|X(ε))
≤ h(ε)

δ(ε) − h(ε)
.

From these inequalities, we obtain relations (2.2) and hence, by Lemma 1, ρ(X(ε), Y (ε)) → 0 as
ε → 0. �

Note that the definition of ρ(X,Y ) is symmetrical with respect to the sets X and Y . Therefore,
in the statement of the theorem, δmin(Y (ε)) can be replaced by δmin(X(ε)).

3. Small-time reachable sets of nonlinear systems

3.1. Auxiliary results

Let X and Y be Banach spaces. Denote by BX(a, µ0) ⊂ X the ball of radius µ0 centered at a.
Consider a mapping Fε : BX(a, µ0) → Y depending on a parameter ε, 0 < ε < ε0.

Assumption 1. The mapping Fε(x) has a Fréchet derivative with respect to x, which satisfies
the Lipschitz condition on BX(a, µ0)

∥

∥F
′

ε(x1)− F
′

ε(x2)
∥

∥ ≤ L(ε)‖x1 − x2‖, x1, x2 ∈ BX(a, µ0), ε ∈ (0, ε0], (3.1)

where L(ε) is a function bounded on (0, ε0].

Let a function µ(ε) map (0, ε0] to (0, µ0]. Assume that µ(ε) → 0 as ε → 0. Denote by Gε the image
of the ball BX(a, µ(ε)) under the mapping Fε:

Gε := {Fε(x) : x ∈ BX(a, µ(ε))}.

Theorem 2. Suppose that condition (3.1) holds. Then

h
(

(coGε − Fε(a)), µ(ε)F
′

ε(a)BX(0, 1)
)

≤ L(ε)µ2(ε),

where h is the Hausdorff distance between sets and coG denotes the convex hull of the set G.
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P r o o f. The proof follows from the proof of Theorem 1 in [10]. �

Let X and Y be real Hilbert spaces. Suppose that a mapping F : X ⊃ BX(a, µ0) → Y is
differentiable and its Frechét derivative F ′ satisfies the Lipschitz condition with constant L. Let
a mapping F be regular at the point a, i.e., let the operator F ′(a) : X → Y be a surjection. The
latter property implies the existence of a positive number γ such that ‖F ′(a)∗y‖ ≥ γ‖y‖ for all
y ∈ Y , which is equivalent to the inequality

(

F ′(a)F ′(a)∗y, y
)

≥ ν‖y‖2

for all y ∈ Y , where ν = γ2 is the smallest eigenvalue of the self-adjoint operator F ′(a)F ′(a)∗. Here
(·, ·) is the bilinear form for the duality between Y and the space Y ∗ conjugate to Y , F ′(a)∗ stands
for the operator adjoint to a bounded linear operator F ′(a). In [17, Theorem 1], it is shown that,
if the inequality

µ ≤ min

{

µ0,

√
ν

2L

}

(3.2)

holds, then the image of the ball BX(a, µ), i.e., the set G = {F (x) : x ∈ BX(a, µ)}, is convex.
In what follows, we assume that X is a Hilbert space and Y = R

n is a finite-dimensional
Euclidean space. Consider the family of operators Fε assuming that each mapping Fε is regular at
the point a. Denote by ν(ε) the smallest eigenvalue of the operator (matrix)

Wε := F ′
ε(a)F

′
ε(a)

∗.

Note that in this case the set Eε := F ′
ε(a)BX(0, 1) is a finite-dimensional ellipsoid defined by the

relation
Eε =

{

x ∈ R
n : x⊤W−1

ε x ≤ 1
}

,

and
√

ν(ε) is the length of its smallest semiaxis. Theorem 2 implies the following statement.

Corollary 1. Suppose that µ(ε) ≤
√

ν(ε)/(2L(ε)). Then the set Gε is convex and

h
(

Gε, Fε(a) + µ(ε)Eε

)

≤ L(ε)µ2(ε).

P r o o f. The convexity of Gε follows from inequality (3.2). Hence, under the conditions of
the corollary, Gε = coGε. Using Theorem 2, we get

h
(

Gε, Fε(a) + µ(ε)Eε

)

= h
(

(coGε − Fε(a)), µ(ε)F
′

ε(a)BX(0, 1)
)

≤ L(ε)µ2(ε).

�

Corollary 2. Suppose that µ(ε)L(ε)/
√

ν(ε) → 0 as ε → 0. Then the set Gε is convex for
sufficiently small ε and

ρ
(

Gε − Fε(a), µ(ε)Eε

)

→ 0 as ε → 0.

P r o o f. Since µ(ε)L(ε)/
√

ν(ε) → 0, we have µ(ε)L(ε)/
√

ν(ε) ≤ 1/2 for all sufficiently small ε.
For these ε, we have µ(ε) ≤

√

ν(ε)/(2L(ε)), hence, Gε is convex. Consider two convex compact
sets depending on ε:

X(ε) = Gε − Fε(a), Y (ε) = µ(ε)Eε.

Calculating the value δ(ε) = δmin(Y (ε)) (see Theorem 1), we get

δ(y|Y (ε)) = µ(ε)
√

y⊤Wεy, δ(ε) = min
‖y‖=1

δ(y|Y (ε)) = µ(ε)
√

ν(ε).
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Since δ(ε) > 0 for ε > 0, we have 0 ∈ intY (ε). It follows from Lyusternik’s theorem [2] that
Fε(a) ∈ intGε for ε > 0. Thus, the zero vector is an interior point of X(ε) and Y (ε) for all
sufficiently small positive ε.

In view of the inequality h(X(ε), Y (ε)) ≤ L(ε)µ(ε)2, we have

h(X(ε), Y (ε))

δ(ε)
≤ L(ε)µ(ε)2

µ(ε)
√

ν(ε)
=

µ(ε)L(ε)
√

ν(ε)
→ 0 as ε → 0.

By Theorem 1, we find that ρ(X(ε), Y (ε)) → 0. �

Thereby, the set Gε − Fε(a) is asymptotically equal to µ(ε)Eε. This means that the image
of the ball B(a, µ(ε)) under the nonlinear transformation Fε is close in shape to the ellipsoid
Fε(a)+µ(ε)Eε. The latter is the result of transforming the ball by means of a linear approximation
of Fε at the point a.

3.2. Small-time reachable sets

Consider a nonlinear control-affine system

ẋ(t) = f1(x(t)) + f2(x(t))u(t), 0 ≤ t ≤ ε ≤ ε̄, x(0) = x0, (3.3)

where x ∈ R
n and u ∈ R

r are state and control inputs, respectively, and ε̄ > 0. The initial state
x0 is assumed to be fixed. Denote by L2[0, ε̄] the Hilbert space of square integrable functions
[0, ε̄] → R

r. Constraints on controls are given in the form

u(·) ∈ B(0, µ),

where B(0, µ) :=
{

u(·) ∈ L2[0, ε̄] : (u(·), u(·)) ≤ µ2
}

is a ball of radius µ > 0 centered at zero and

(u(·), u(·)) = ‖u(·))‖2
L2 [0,ε̄]

=

∫ ε̄

0
u⊤(t)u(t)dt.

Suppose that, for any u(·) ∈ B(0, µ), there exists a unique solution x(t, u(·)) of system (3.3),
this solution is defined on [0, ε̄], and all trajectories starting from x0 and corresponding to the
controls from the ball B(0, µ) belong to a compact set D. Assume also that the functions f1 and
f2 have Lipschitz continuous derivatives on D.

Let G(ε, µ) be the reachable set of system (3.3) at time ε ∈ [0, ε̄] under integral constraints

G(ε, µ) :=
{

x ∈ R
n : ∃u(·) ∈ B(0, µ), x = x(ε, u(·))

}

.

Since ‖u(·)‖L2 [0,ε] ≤ ‖u(·)‖L2 [0,ε̄], the set G(ε, µ) can be written as follows:

G(ε, µ) =
{

x ∈ R
n : ∃u(·), ‖u(·)‖L2 [0,ε] ≤ µ, x = x(ε, u(·))

}

.

We study the behavior of reachable sets G(ε, µ) under the assumption that ε is a small number.
Using a time change, we reduce the problem of describing reachable sets on the time interval [0, ε] to
a similar problem on the interval [0, 1] for another system whose equations and integral constraints
on the control depend on ε.

Representing t in the form t = ετ , we set y(τ) = x(ετ) and v(τ) = εu(ετ). Then

ẏ(τ) = εf1(y(τ)) + f2(y(τ))v(τ), 0 ≤ τ ≤ 1, y(0) = x0, (3.4)
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with the following constraint on the new control v(·):
∫ 1

0
v⊤(t)v(t)dt ≤ (µ

√
ε)2. (3.5)

The trajectories of system (3.4), (3.5) belong to the compact set D if ε ≤ ε̄.
Define µ(ε) := µ

√
ε. Let G̃(1, µ) be the reachable set of system (3.4):

G̃(1, µ) := {y ∈ R
n : ∃v(·) ∈ B(0, µ) ⊂ L2[0, 1], y = y(1, v(·))}.

Hereinafter, we use the same notation B(0, µ) for balls in the spaces L2[0, b] with different b.
Besides, for simplicity, we omit the time interval in the notation of the space L2 if this does not
cause misunderstanding.

Define a family of mappings Fε : L2[0, 1] → R
n by the equality Fε(v(·)) = yε(1, v(·)), where

yε(t, v(·)) is the solution of system (3.4) corresponding to v(·). Since y(1, v(·)) = x(t1, u(·)), we
have the equality

G̃(1, µ(ε)) = G(ε, µ) =
{

Fε(v(·)) : v(·) ∈ B(0, µ(ε))
}

.

The mapping Fε(v(·)) is differentiable; its derivative is defined as follows [10]:

F ′
ε(v(·))∆v(·) = ∆y(1,∆v(·)),

where ∆y(τ) is the solution of system (3.4) linearized along the trajectory
(

y(τ, v(·)), v(·)
)

∆̇y(τ) = εA(τ)∆y(τ) +B(τ)∆v(τ), τ ∈ [0, 1], ∆y(0) = 0. (3.6)

Here

A(τ) =
∂f1
∂x

(y(τ)) +
r

∑

i=1

∂f i
2

∂x
(y(τ))vi(τ), B(τ) = f2(y(τ)).

The following statement is true.

Proposition 1. [8, 9] The mapping F ′
ε(v(·)) is Lipschitz continuous on B(0, µ(ε)) with the

constant L(ε) = L0 + L1ε (L0, L1 ≥ 0). If all elements of the matrix f2 in the equation of the
system are independent of the state (i.e., f2(x) = f2 is a constant matrix ), then L0 = 0.

We can use Corollary 2 proved above to describe the reachable sets on small time intervals. In
this case, a = 0 ∈ L2 is the zero control and the derivative F ′

ε(0) is defined by equation (3.6)
corresponding to system (3.4) linearized along the trajectory (y(τ, 0), 0). Here y(τ, 0) is a solution
of (3.4) with v(τ) ≡ 0, τ ∈ [0, 1]. In this case,

A(τ) =
∂f1
∂x

(y(τ)), B(τ) = f2(y(τ)).

Consider a linear control system

ż(τ) = εA(τ)z(τ) +B(τ)u(τ), τ ∈ [0, 1], (3.7)

with continuous matrices A(τ) and B(τ).

Definition 1. The symmetric matrix Wε(τ) defined by the equality

Wε(τ) =

∫ τ

0
Xε(τ, s)B(s)B⊤(s)X⊤

ε (τ, s)ds, (3.8)

where Xε(τ, s) is the fundamental Cauchy matrix of system (3.7) (Ẋε(τ, s) = εA(τ)Xε(τ, s),
X(s, s) = I) is called the controllability Gramian of the control system (3.7).
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Differentiating equality (3.8), it is easy to see that Wε(t) is a solution of the linear differential
equation

Ẇε(τ) = εA(τ)Wε(τ) + εWε(τ)A
⊤(τ) +B(τ)B⊤(τ), Wε(0) = 0.

The system is completely controllable on the interval [0, 1] if and only if Wε(1) is positive definite.
It is known (see, for example, [14, 16]) that, in this case, the reachable set under the constraint

∫ 1

0
u⊤(τ)u(τ)dτ ≤ µ2

is an ellipsoid defined as the set of solutions of the inequality x⊤W−1
ε (1)x ≤ µ2.

From the above, we can conclude that the matrix Wε = F ′
ε(0)F

′
ε(0)

∗ coincides with the con-
trollability Gramian Wε(1) of system (3.6) and the ellipsoid µ(ε)Eε = Ĝ(ε, µ) is the reachable set
at time 1 of system (3.6) under constraint (3.5). Note that Fε(0) equals to x(ε, 0). Taking into
account that µ(ε) = µ

√
ε, we arrive at the following statement.

Theorem 3. Let ν(ε) be the smallest eigenvalue of the controllability Gramian W−1
ε (1) of the

linearized system (3.6). Suppose that L(ε)
√
ε/
√

ν(ε) → 0 as ε → 0. Then the reachable set G(ε, µ)
is convex for sufficiently small ε and

ρ(G(ε, µ) − x(ε, 0), Ĝ(ε, µ)) → 0 as ε → 0,

where Ĝ(ε, µ) is the reachable set of the linearized system (3.6).

Using the reverse time change, it is easy to show that Ĝ(ε, µ)) is the reachable set at time ε for
the linearized system (3.3). Thus, Theorem 3 states that, under proper asymptotic behavior of the
smallest eigenvalue of the controllability Gramian, the small-time reachable set is asymptotically
equal to the reachable set of the linearized system. The asymptotic behavior of the Gramian for
the case of linear autonomous systems is studied in the next section.

4. Time-invariant systems on a small time interval

4.1. Asymptotics of the smallest eigenvalue of the controllability Gramian

Consider a linear time-invariant control system

ẋ(t) = εAx(t) +Bu(t), t ∈ [0, 1], (4.1)

where x ∈ R
n, u ∈ R

r, and ε > 0 is a small parameter. If the pair (A,B) is completely controllable,
then (εA,B) is also controllable for all ε 6= 0. In this case, the smallest eigenvalue of the controlla-
bility Gramian ν(ε) = ν(Wε(1)) is positive for all ε > 0. In this section, we study the asymptotic
behavior of ν(ε) for small ε.

Consider the controllability Gramian Wε(t) of system (4.1). The matrix Wε(t), t > 0, is positive
definite for every ε 6= 0 if and only if the pair (A,B) is completely controllable. Let us look for
Wε(t) as the sum of series in powers of ε:

Wε(t) = V0(t) + εV1(t) + ε2V2(t) + · · · , Vk(0) = 0, k = 0, 1, . . . . (4.2)

Differentiating (4.2) and equating coefficients at equal powers of ε, we get

V̇0(t) = BB⊤, V̇k(t) = AVk−1(t) + Vk−1(t)A
⊤, k = 1, 2, . . . . (4.3)
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Integrating equations (4.3), we get

V0(t) = tU0, Vi(t) =
ti+1

(i+ 1)!
AUi, i = 1, 2, . . . ,

where
U0 = BB⊤, Ui = AUi−1 + Ui−1A

⊤, k = 1, 2, . . . .

Thus, for Wε = Wε(1), we have

Wε =

∞
∑

k=0

εk

(k + 1)!
Uk. (4.4)

In view of the estimate ‖Uk‖ ≤ 2‖A‖‖Uk−1‖ ≤ 2k‖A‖k‖U0‖, series (4.4) and (4.2) are majorized
by the converging series

∞
∑

k=0

(2ε‖A‖)k
(k + 1)!

‖U0‖.

Here ‖A‖ is the spectral matrix norm induced by the Euclidean vector norm. As a result, we find
that the matrix Wε = Wε(1) is represented as the sum of series (4.4) uniformly convergent on every
bounded subset of R.

Note that all matrices Uk in (4.4) are symmetric but not necessarily positive semi-definite.
For U0, we obviously have ν(U0) ≥ 0. If ν(U0) > 0, then there exists α > 0 such that ν(Wε) ≥ α
for sufficiently small ε. Further, we assume that ν(U0) = 0, hence ν(Wε) → 0 as ε → 0.

Definition 2. [18] A pair (A,B) is linearly equivalent to a pair (A1, B1) if there exists a
nonsingular matrix S such that A1 = SAS−1 and B1 = SB.

Linear equivalent pairs generate equations of the same control system in different coordinate sys-
tems. A pair (A,B) is controllable iff (A1, B1) is controllable. The asymptotic behavior of the
controllability Gramians of linear equivalent pairs is the same.

Proposition 2. [9, Lemma 1] Let (A,B) and (A1, B1) be linearly equivalent pairs, and let
Wε and W 1

ε be the corresponding controllability Gramians. There exist α > 0 and β > 0 such that

αν(Wε) ≤ ν(W 1
ε ) ≤ βν(Wε)

for all ε.

Consider systems with single control. In this case, A is an n×nmatrix and B is an n-dimensional
column-vector.

Theorem 4. [9, Theorem 1] Assume that a system is completely controllable. If n = 2, then
there exist α > 0 and β > 0 such that the following inequality holds for all sufficiently small ε > 0:

αε2 ≤ ν(Wε) ≤ βε2.

If n ≥ 3, then there exists β > 0 such that

0 < ν(Wε) ≤ βε2n−2

for all sufficiently small ε > 0.

The proof of this theorem is based on reducing the control system to the Frobenius form.
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4.2. Small-time reachable sets of time-invariant systems

Consider an autonomous control system with a single input

ẋ(t) = f(x(t)) +Bu(t), x(0) = x0, 0 ≤ t ≤ ε, (4.5)

where x ∈ R
n, u ∈ R, f : Rn → R

n is a continuously differential mapping, B is an n × 1 matrix
(a column-vector), and x0 is a fixed initial state, with control variables subjected to the quadratic
integral constraints

∫ ε

0
u2(t)dt ≤ µ2.

Suppose, as above, that there exists a compact set D ⊂ R
n containing all trajectories of

system (4.5) and that f(x) has a Lipschitz continuous derivative on this set.

Denote by A(t) =
∂f

∂x
(x(t, 0)) the matrix of the system linearized along the trajectory x(t, 0)

corresponding to the zero control. Suppose that f(x0) = 0. In this case, x(t, 0) ≡ 0 and, hence,

A(t) =
∂f

∂x
(x(t, 0)) =

∂f

∂x
(x0) = A

is a constant matrix. Let Wε be the controllability Gramian of the pair (εA,B) on the interval
[0, 1], and let ν(ε) be the smallest eigenvalue of Wε. If the pair (A,B) is controllable, then, by
Theorem 4, ν(ε) ≥ αε2 if n = 2 and ν(Wε) ≤ βε4 if n ≥ 3 for some α, β > 0.

From Theorem 3 we obtain the following statement.

Corollary 3. Let n = 2, and let system (4.5) linearized at the point x0 be completely control-
lable. Then the reachable set G(ε, µ) is convex for all sufficiently small ε and asymptotically equal
to the reachable set of the linearized system.

P r o o f. In the conditions of the theorem, we have L(ε) = L1ε (see Proposition 1) and
ν(ε) ≥ αε2. This implies that L(ε)

√
ε/
√

ν(ε) ≤ (L1/
√
α)

√
ε → 0 as ε → 0. �

Note than the sufficient conditions for the convexity of G(ε) are not satisfied for a system with
a single input for n ≥ 3.

4.3. Examples

As an illustrative example, consider the Duffing oscillator

ẋ1 = x2, ẋ2 = −x1 − 10x31 + u, 0 ≤ t ≤ ε (4.6)

which describes the motion of a nonlinear stiff spring on impact of an external force u, with integral
constraints

∫ ε

0
u2(t)dt ≤ µ2

and zero initial state x1(0) = 0, x2(0) = 0.
Consider the Lyapunov-type function

V (x) = V (x1, x2) =
5

2
x41 +

1

2
x21 +

1

2
x22.

Differentiating V (x(t)) along an arbitrary trajectory of the system and applying an analog of
Grownwall’s Lemma [23], we find that all trajectories of system (4.6) belong to the compact set
D = {x ∈ R

2 : V (x) ≤ µ2ε} (see [22]).
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Figure 1. Reachable sets of Duffing oscillator

System (4.6) linearized along x(t) ≡ 0 after a time change

ẋ1 = εx2, ẋ2 = −x1 + u, x(0) = (0, 0), 0 ≤ τ ≤ 1,

is completely controllable. From Corollary 3 it follows that, for small ε, the reachable sets G(ε) in
this example are convex sets close in shape to ellipsoids.

The results of the numerical simulation are shown in the figure that follows. These results
are obtained with the use of an algorithm based on Pontryagin’s maximum principle for boundary
trajectories.

Fig. 1 shows the results of numerical simulation for this example. Its left-hand side exhibits
the plot of the boundaries of the reachable set at times ε = 0.5, 0.7, 0.9, 1.2, and 1.5, respectively.
A larger set in the figure corresponds to a larger value of ε. This plot indicates that the reachable
sets for smaller values of ε are convex and look like ellipsoids. The right-hand side of the figure
corresponds to smaller ε. Here the boundaries of reachable sets of the nonlinear system are shown
in blue and of the linearized system in red. Note that the reachable sets contract to zero as ε → 0.
In order to make the picture more informative, we multiply each of the sets by a scaling factor s(ε)
depending on ε. The resulting ellipsoids tend to a degenerate ellipsoid (vertical segment) as ε → 0.

As another example, consider a bilinear system

{

ẋ1 = x2u1 − x1u2,
ẋ2 = −x1u1 − x2u2,

with initial state given by the equalities x1(0) = 1 and x2(0) = 0. It is known that, under control
constraints in the form

|u1(t)| ≤ 1, |u2(t)| ≤ 1, 0 ≤ t ≤ ε,

the reachable set G(ε) is non-convex for any ε > 0 [18]. Consider further the integral constraints
on the control

∫ ε

0

(

u21(t) + u22(t)
)

dt ≤ 1.

All trajectories of the system belong to a compact set on the plane. This fact could be easily proved
by using the transition to the polar coordinates. The matrices A and B of the system linearized
along the trajectory x(t) ≡ (1, 0) have the following form:

A =

(

0 0
0 0

)

, B =

(

0 −1
−1 0

)

.
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The system is completely controllable and the controllability Gramian Wε is independent of ε:

Wε = BB⊤ =

(

1 0
0 1

)

.

Since ν(Wε) = ν(ε) and the Lipschitz constant L(ε) is independent of ε, we have

L(ε)
√
ε/
√

ν(ε) → 0

as ε → 0. Consequently, the reachable sets G(ε) are convex for sufficiently small ε and asymptoti-
cally equal to ellipsoids (see also [10]).
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