DOI: 10.15826/umj.2020.1.014

MOMENT PROBLEMS IN WEIGHTED L^2 SPACES ON THE REAL LINE

Elias Zikkos

Khalifa University, PO. Box 127788 Abu Dhabi, United Arab Emirates

elias.zikkos@ku.ac.ae

Abstract: For a class of sets with multiple terms

 $\{\lambda_n, \mu_n\}_{n=1}^{\infty} := \{\underbrace{\lambda_1, \lambda_1, \dots, \lambda_1}_{\mu_1 - times}, \underbrace{\lambda_2, \lambda_2, \dots, \lambda_2}_{\mu_2 - times}, \dots, \underbrace{\lambda_k, \lambda_k, \dots, \lambda_k}_{\mu_k - times}, \dots\},$

having density d counting multiplicities, and a doubly-indexed sequence of non-zero complex numbers $\{d_{n,k} : n \in \mathbb{N}, k = 0, 1, \dots, \mu_n - 1\}$ satisfying certain growth conditions, we consider a moment problem of the form

$$\int_{-\infty}^{\infty} e^{-2w(t)} t^k e^{\lambda_n t} f(t) dt = d_{n,k}, \quad \forall \ n \in \mathbb{N} \quad \text{and} \quad k = 0, 1, 2, \dots, \mu_n - 1,$$

in weighted $L^2(-\infty,\infty)$ spaces. We obtain a solution f which extends analytically as an entire function, admitting a Taylor-Dirichlet series representation

$$f(z) = \sum_{n=1}^{\infty} \left(\sum_{k=0}^{\mu_n - 1} c_{n,k} z^k \right) e^{\lambda_n z}, \quad c_{n,k} \in \mathbb{C}, \quad \forall \ z \in \mathbb{C}.$$

The proof depends on our previous work where we characterized the closed span of the exponential system $\{t^k e^{\lambda_n t} : n \in \mathbb{N}, k = 0, 1, 2, \dots, \mu_n - 1\}$ in weighted $L^2(-\infty, \infty)$ spaces, and also derived a sharp upper bound for the norm of elements of a biorthogonal sequence to the exponential system. The proof also utilizes notions from Non-Harmonic Fourier series such as Bessel and Riesz–Fischer sequences.

Keywords: Moment problems, Exponential systems, Biorthogonal families, Weighted Banach spaces, Bessel and Riesz–Fischer sequences.

1. Introduction

P. Malliavin [5] considered the following in the sense of the classical Bernstein weighted polynomial approximation problem on the real line. Let W(t) be a real-valued continuous function defined on the half-line $[0, +\infty)$ such that it is log-convex, that is $\log |W(e^s)|$ is a convex function on the real line. Let C_W be the weighted Banach space whose elements are the complex-valued continuous functions f defined on $[0, \infty)$, such that

$$\lim_{t \to \infty} \frac{f(t)}{W(t)} = 0$$

equipped with the norm

$$||f||_W = \sup\left\{\frac{|f(t)|}{W(t)} : t \in [0,\infty)\right\}.$$

Suppose also that $\{\lambda_n\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive real numbers diverging to infinity so that $\liminf_{n\to\infty} (\lambda_{n+1} - \lambda_n) > 0$. Malliavin proved [5, Theorem 8.3] that the span of the

system $\{t^{\lambda_n}\}_{n=1}^{\infty}$ is not dense in C_W if and only if there exists $\eta \in \mathbb{R}$ such that

$$\int_{1}^{+\infty} \frac{\log |W(e^{\sigma_{\Lambda}(t)-\eta})|}{t^2} dt < \infty, \quad \text{where} \quad \sigma_{\Lambda}(t) = \sum_{\lambda_n \le t} \frac{2}{\lambda_n}$$

The question of the closure of the non-dense span of the system $\{t^{\lambda_n}\}_{n=1}^{\infty}$ was later on addressed by J. M. Anderson and K. G. Binmore [1, Theorem 3]. Provided that the λ_n are positive integers, they proved that any function in the closure extends analytically as an entire function with a gap power series expansion of the form $f(z) = \sum_{n=1}^{\infty} a_n z^{\lambda_n}$.

We note that A. Borichev [2] gave a complete characterization of the closure of polynomials in certain weighted Banach spaces on \mathbb{R} , when W is an even log-convex function.

Motivated by the above results, we explored in [7, 8] the properties of a class of exponential systems

$$E_{\Lambda} := \{ t^k e^{\lambda_n t} : n \in \mathbb{N}, \ k = 0, 1, 2, \dots, \mu_n - 1 \},\$$

in certain weighted Banach spaces on the real line. We note that such a system is associated to a set $\Lambda = \{\lambda_n, \mu_n\}_{n=1}^{\infty}$ with multiple terms

$$\{\lambda_n, \mu_n\}_{n=1}^{\infty} := \{\underbrace{\lambda_1, \lambda_1, \dots, \lambda_1}_{\mu_1 - times}, \underbrace{\lambda_2, \lambda_2, \dots, \lambda_2}_{\mu_2 - times}, \dots, \underbrace{\lambda_k, \lambda_k, \dots, \lambda_k}_{\mu_k - times}, \dots\},\$$

where

- $\{\lambda_n\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive real numbers diverging to infinity,
- $\{\mu_n\}_{n=1}^{\infty}$ is a sequence of positive integers, not necessarily bounded.

We say that the set Λ is a multiplicity sequence.

In [7, 8] we assumed that the multiplicity sequence Λ belongs to a certain class denoted by U(d, 0). This class and the weighted Banach spaces involved will be recalled in Section 2, while the main results from [7, 8] will be restated in Section 3.

In this paper we continue our investigations by considering a moment problem in a weighted L^2 space on the real line. Our result, Theorem 4, is proved in Section 5. Prior to that, we introduce in Section 4 some notions from Non-Harmonic Fourier Series such as Bessel and Riesz–Fischer sequences that will play a decisive role.

The following interesting result is a special case of Theorem 4.

Theorem 1. Let

$$w(t) = \begin{cases} t^{2m+2}, & t \ge 0, \\ 0, & t < 0, \end{cases} \quad where \quad m \in \mathbb{N}.$$

Let $\{p_n\}_{n=1}^{\infty}$ be the increasing sequence of prime numbers and let $\mu_n = p_{n+1} - p_n$ for each $n \in \mathbb{N}$, that is, μ_n is the distance between consecutive primes. Then, for any real number $\gamma < 2$, there exists an entire function f admitting a Taylor-Dirichlet series representation

$$f(z) = \sum_{n=1}^{\infty} \left(\sum_{k=0}^{\mu_n - 1} c_{n,k} z^k \right) e^{p_n z}, \quad c_{n,k} \in \mathbb{C}, \quad \forall \ z \in \mathbb{C},$$

with the series converging uniformly on compact subsets of \mathbb{C} , so that

$$\int_{-\infty}^{\infty} e^{-2w(t)} t^k e^{p_n t} f(t) dt = p_n^{\gamma p_n}, \quad \forall n \in \mathbb{N} \quad and \quad k = 0, 1, 2, \dots, \mu_n - 1.$$

2. Notations and definitions from [7, 8]

2.1. Weighted Banach spaces

Definition 1. We denote by $A_{\rho,\tau}$ the class of all non-negative convex functions w(t) defined on the real line that satisfy the following properties:

- (i) w(0) = 0 and $w(t) \ge t^2$, $\forall t \ge \tau \ge 0$,
- (ii) there is some $\rho > 0$ so that $w(t) \le \rho |t| \quad \forall t < 0$,
- (iii) for all A > 0 there is a positive number t(A) such that $w(t+A) \ge w(t) + t$, $\forall t \ge t(A)$.

Example 1. Let

$$w(t) = \begin{cases} t^{2m+2}, & t \ge 0, \\ 0, & t < 0, \end{cases} \quad \text{where} \quad m \in \mathbb{N},$$

then $w \in A_{\rho,\tau}$.

For $p \ge 1$ we denote by L^p_w the weighted Banach space of complex-valued measurable functions f defined on \mathbb{R} such that

$$\int_{-\infty}^{\infty} |f(t)e^{-w(t)}|^p \, dt < \infty,$$

equipped with the norm

$$||f||_{L^p_w} := \left(\int_{-\infty}^{\infty} |f(t)e^{-w(t)}|^p \, dt\right)^{1/p}.$$

As usual, L_w^2 is a Hilbert space when endowed with the inner product

$$\langle f,g \rangle := \int_{-\infty}^{\infty} f(t) \overline{g(t)} e^{-2w(t)} dt.$$

2.2. The class of multiplicity sequences U(d, 0)

We say that a multiplicity sequence $\Lambda = \{\lambda_n, \mu_n\}_{n=1}^{\infty}$ has finite density d counting multiplicities, if

$$\lim_{n \to \infty} \frac{n_{\Lambda}(t)}{t} = d < \infty, \quad \text{where} \quad n_{\Lambda}(t) := \sum_{\lambda_n \le t} \mu_n.$$
(2.1)

If $\mu_n = 1$ for all $n \in \mathbb{N}$ the above is equivalent to

$$\frac{n}{\lambda_n} \to d$$
 as $n \to \infty$.

Definition 2. We denote by L(c,d) the class of strictly increasing sequences $A = \{a_n\}_{n=1}^{\infty}$ having positive real terms a_n such that A has a finite density d and uniformly separated terms for some c > 0, that is,

$$\frac{n}{a_n} \to d \quad as \quad n \to \infty, \quad a_{n+1} - a_n > c \quad \forall \ n \in \mathbb{N}.$$

Suppose now that a sequence $A = \{a_n\}_{n=1}^{\infty}$ belongs to the class L(c, d). Then choose two positive numbers α , δ so that

$$\alpha < 1$$
 and $\delta \leq \min\{4, c\}$.

For each $n \in \mathbb{N}$ consider the closed segment $T_n := \{x : |x - a_n| \leq a_n^{\alpha}\} \subset \mathbb{R}$. Then, choose a point in T_n that we call b_n , in an almost arbitrary way, in the sense that

for all
$$n \neq m$$
 either (I) $b_m = b_n$ or (II) $|b_m - b_n| \ge \delta$.

Hence a new sequence $B = \{b_n\}_{n=1}^{\infty}$ is constructed.

We remark that the condition (I) allows for the presence of multiple terms in B. We may now rewrite $B = \{b_n\}_{n=1}^{\infty}$ in the form of a multiplicity sequence $\Lambda = \{\lambda_n, \mu_n\}_{n=1}^{\infty}$, by grouping together all those terms that have the same modulus.

Definition 3. Fix a nonnegative constant d. We denote by U(d, 0) the class of all the multiplicity sequences $\Lambda = \{\lambda_n, \mu_n\}_{n=1}^{\infty}$ constructed in the way described above from sequences $A = \{a_n\}_{n=1}^{\infty}$ which belong to the class L(c, d), for any positive constants α , δ , c, with $\alpha < 1$ and $\delta \leq \min\{4, c\}$.

Remark 1. Clearly L(c, d) is a subclass of U(d, 0).

We now mention two important properties of a sequence $\Lambda \in U(d, 0)$ [8, Section 2].

- (1) Λ has the same density d counting multiplicities as the original sequence A from which it was constructed, that is, (2.1) holds.
- (2) There exists some $\chi > 0$ independent of n, so that

$$\mu_n \le \chi \lambda_n^{\alpha} \quad \forall \ n \in \mathbb{N}.$$

We also note that since $\alpha < 1$, then $\mu_n / \lambda_n \to 0$ as $n \to \infty$, hence for every $\epsilon > 0$ there is $n(\epsilon) \in \mathbb{N}$ so that

$$\mu_n \le \epsilon \lambda_n \quad \forall \ n \ge n(\epsilon). \tag{2.3}$$

Remark 2. We use the notation U(d,0) since Λ has density d and $\mu_n/\lambda_n \to 0$ as $n \to \infty$. That is, the second parameter in our notation stands for the relation between the multiplicities μ_n and their corresponding frequencies λ_n .

An interesting multiplicity sequence in the U(1,0) class with unbounded multiplicities is the following.

Example 2. Let $\{p_n\}_{n=1}^{\infty}$ be the increasing sequence of prime numbers, and let $\mu_n = p_{n+1} - p_n$ for each $n \in \mathbb{N}$. Then $\Lambda = \{p_n, \mu_n\}_{n=1}^{\infty}$ belongs to the class U(1, 0). It can be constructed in the way described above from the set \mathbb{N} of natural numbers which has density 1 (see [7, Example 1.3] and [8, Example 2.1]).

3. Our previous main results and the new one

Assuming that a multiplicity sequence $\Lambda = \{\lambda_n, \mu_n\}_{n=1}^{\infty}$ belongs to the class U(d, 0), we obtained in [7] necessary and sufficient conditions in order for the span of E_{Λ} to be dense in L_w^p . **Theorem 2** [7, Theorem 1.1]. Let w(t) be a function which belongs to the class $A_{\rho,\tau}$ and suppose that $\Lambda \in U(d,0)$ for some d > 0. Then the span of the system E_{Λ} is not dense in L_w^p for all $p \in [1,\infty)$, if and only if there exists $\eta \in \mathbb{R}$ such that

$$\int_{1}^{+\infty} \frac{w(\sigma_{\Lambda}(t) - \eta)}{1 + t^2} dt < \infty, \quad \sigma_{\Lambda}(t) := 2 \sum_{\lambda_n \le t} \frac{\mu_n}{\lambda_n}.$$
(3.1)

We then characterized in [8] the closure of the non-dense span of E_{Λ} . Moreover, in [8] we also derived an upper bound for the norm of the elements of a biorthogonal sequence

 $r_{\Lambda} := \{r_{n,k}: n \in \mathbb{N}, k = 0, 1, \dots, \mu_n - 1\} \subset L^2_w$

to the system E_{Λ} in L^2_w , where biorthogonality means

$$\int_{-\infty}^{\infty} r_{n,k}(t) t^l e^{\lambda_j t} e^{-2w(t)} dt = \begin{cases} 1, & j = n, \quad l = k, \\ 0, & j = n, \quad l \in \{0, 1, \dots, \mu_n - 1\} \setminus \{k\}, \\ 0, & j \neq n, \quad l \in \{0, 1, \dots, \mu_j - 1\}. \end{cases}$$

Theorem 3 [8, Theorems 2.1 and 6.1]. Suppose that $\Lambda \in U(d,0)$ for some d > 0, $w(t) \in A_{\rho,\tau}$ and (3.1) holds.

Part I. Let f be a function which belongs to the closed span of E_{Λ} in L_w^p for some $p \ge 1$. Then there is an entire function g(z) which admits a Taylor-Dirichlet series representation

$$g(z) = \sum_{n=1}^{\infty} \left(\sum_{k=0}^{\mu_n - 1} c_{n,k} z^k \right) e^{\lambda_n z}, \quad c_{n,k} \in \mathbb{C}, \quad \forall \ z \in \mathbb{C},$$

with the series converging uniformly on compact subsets of \mathbb{C} , so that f(x) = g(x) almost everywhere on the real line.

Part II. There is a unique biorthogonal sequence r_{Λ} to the system E_{Λ} in L^2_w which belongs to its closed span, such that for every $\epsilon > 0$ there is a constant $m_{\epsilon} > 0$, independent of n and k, so that

$$||r_{n,k}||_{L^2_w} \le m_\epsilon \exp\left\{(-2d+\epsilon)\lambda_n \log \lambda_n\right\}, \quad \forall \ n \in \mathbb{N}, \quad k = 0, 1, \dots, \mu_n - 1.$$
(3.2)

Our aim in this article is to prove the following moment problem result.

Theorem 4. Suppose that $\Lambda \in U(d,0)$ for some d > 0, $w(t) \in A_{\rho,\tau}$ and (3.1) holds. Consider a doubly-indexed sequence of non-zero complex numbers

$$\{d_{n,k}: n \in \mathbb{N}, k = 0, 1, \dots, \mu_n - 1\}$$

such that

$$\limsup_{n \to \infty} \frac{\log A_n}{\lambda_n \log \lambda_n} = \gamma < 2d, \quad A_n = \max\{|d_{n,k}| : k = 0, 1, \dots, \mu_n - 1\}.$$
(3.3)

Then there exists a function $f \in \overline{\text{span}}(E_{\Lambda})$ in L^2_w that extends analytically as an entire function, admitting a Taylor-Dirichlet series representation

$$f(z) = \sum_{n=1}^{\infty} \left(\sum_{k=0}^{\mu_n - 1} c_{n,k} z^k \right) e^{\lambda_n z}, \quad c_{n,k} \in \mathbb{C}, \quad \forall \ z \in \mathbb{C},$$

with the series converging uniformly on compact subsets of \mathbb{C} , so that

$$\int_{-\infty}^{\infty} e^{-2w(t)} t^k e^{\lambda_n t} f(t) dt = d_{n,k}, \quad \forall \ n \in \mathbb{N} \quad and \quad k = 0, 1, 2, \dots, \mu_n - 1.$$
(3.4)

We point out that similar moment problems were considered in [8, Theorems 1.2 and 7.1] but the solution obtained is a continuous function on \mathbb{R} rather than an entire function.

We also note that Theorem 1 follows by combining Theorem 4 with Example 1, Example 2, and

Remark 3. Suppose that Λ has a positive density d. A sufficient condition for (3.1) to hold (see the proof of [8, Theorem 2.2]) is if $w(t) \in A_{\rho,\tau}$ such that

$$t^2 \le w(t) \le e^{\xi t}, \quad \forall \ t \ge \tau \ge 0, \quad 0 < \xi < \frac{1}{2d}.$$

The following results are direct consequences of Theorem 4.

Corollary 1. Let w(t) be as in Example 1.

(A) Suppose that $\{\lambda_n\}_{n=1}^{\infty}$ is a sequence in the L(c, d) class for some d > 0 and consider a sequence of non-zero complex numbers $\{d_n\}_{n=1}^{\infty}$ such that

$$\limsup_{n \to \infty} \frac{\log |d_n|}{\lambda_n \log \lambda_n} < 2d.$$

Then there exists an entire function f admitting a Dirichlet series representation

$$f(z) = \sum_{n=1}^{\infty} c_n e^{\lambda_n z}, \quad c_n \in \mathbb{C}, \quad \forall \ z \in \mathbb{C},$$

with the series converging uniformly on compact subsets of \mathbb{C} , so that

$$\int_{-\infty}^{\infty} e^{-2w(t)} e^{\lambda_n t} f(t) \, dt = d_n, \quad \forall \ n \in \mathbb{N}.$$

(B) There exist entire functions f and g admitting a Dirichlet series representation

$$f(z) = \sum_{n=1}^{\infty} c_n e^{nz}, \quad g(z) = \sum_{n=1}^{\infty} d_n e^{nz},$$

so that for all $n \in \mathbb{N}$ we have

$$\int_{-\infty}^{\infty} e^{-2w(t)} e^{nt} f(t) \, dt = n^n, \quad \int_{-\infty}^{\infty} e^{-2w(t)} e^{nt} g(t) \, dt = n!.$$

4. Bessel and Riesz–Fischer sequences

The proof of Theorem 4 depends on Theorem 3 and utilizes the following notions from Non-Harmonic Fourier Series.

Let *H* be a separable Hilbert space endowed with an inner product $\langle \cdot \rangle$, and consider two sequences $\{f_n\}_{n=1}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$ in *H*. We say that [6, Chapter 4, Section 2]:

(i) $\{f_n\}_{n=1}^{\infty}$ is a Bessel sequence if there exists a constant B > 0 such that

$$\sum_{n=1}^{\infty} |\langle f, f_n \rangle|^2 < B ||f||^2 \quad \forall \ f \in H.$$

(ii) $\{g_n\}_{n=1}^{\infty}$ is a Riesz-Fischer sequence if the moment problem $\langle f, g_n \rangle = c_n$ has at least one solution $f \in H$ for every sequence $\{c_n\}_{n=1}^{\infty}$ in the space $l^2(\mathbb{N})$.

Remark 4. It follows from [3, Proposition 2.3] that if two sequences $\{f_n\}_{n=1}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$ in H are biorthogonal, that is

$$\langle f_n, g_m \rangle = \begin{cases} 1, & m = n, \\ 0, & m \neq n, \end{cases}$$

and $\{f_n\}_{n=1}^{\infty}$ is a Bessel sequence, then $\{g_n\}_{n=1}^{\infty}$ is a Riesz-Fischer sequence.

We give now a sufficient condition in order for $\{g_n\}_{n=1}^{\infty}$ to be a Riesz-Fischer sequence.

Lemma 1. Let H be a separable Hilbert space and consider two biorthogonal sequences $\{f_n\}_{n=1}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$ in H. Let $c_{n,m} = \langle f_n, f_m \rangle$ and let $C = (c_{n,m})$ be the Hermitian Gram matrix associated with $\{f_n\}_{n=1}^{\infty}$. If there is some M > 0 so that

$$\sum_{n=1}^{\infty} |c_{n,m}| < M \quad for \ all \quad m = 1, 2, 3, \dots,$$
(4.1)

then $\{f_n\}_{n=1}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$ are Bessel and Riesz-Fischer sequences respectively in H.

P r o o f. Relation (4.1) implies that the Gram matrix C defines a bounded linear operator on the space of sequences $l^2(\mathbb{N})$ (see [4, Lemma 3.5.3] and [6, Sec. 4.2, Lemma 1]). It then follows by [4, Lemma 3.5.1] that $\{f_n\}_{n=1}^{\infty}$ is a Bessel sequence in H. By Remark 4 we conclude that $\{g_n\}_{n=1}^{\infty}$ is a Riesz-Fischer sequence in H.

5. Proof of Theorem 4

Clearly span (E_{Λ}) in L_w^2 is a separable Hilbert space and let us denote this space by H_{Λ} . From Theorem 3 (Part II), let $\{r_{n,k}\}$ be the biorthogonal sequence to E_{Λ} which belongs to its closed span.

Then, define for every $n \in \mathbb{N}$ and $k = 0, 1, \dots, \mu_n - 1$ the following:

$$U_{n,k}(t) := \lambda_n d_{n,k} r_{n,k}(t) \quad \text{and} \quad V_{n,k}(t) := \frac{t^k e^{\lambda_n t}}{\lambda_n \overline{d_{n,k}}}.$$

It easily follows that $\{U_{n,k}\}$ and $\{V_{n,k}\}$ are biorthogonal sequences in H_{Λ} .

We now claim that $\{U_{n,k}\}$ and $\{V_{n,k}\}$ are Bessel and Riesz-Fischer sequences respectively in H_{Λ} . First, since (3.2) and (3.3) hold, if we let $\epsilon = (2d - \gamma)/2$ we get

$$||U_{n,k}||_{L^2_w} \leq e^{-\epsilon\lambda_n}, \quad \forall n \in \mathbb{N} \text{ and } k = 0, 1, 2, \dots, \mu_n - 1.$$

Then, by the Cauchy-Schwartz inequality we get

$$|\langle U_{n,k}, U_{m,j} \rangle| \le e^{-\epsilon\lambda_n} \cdot e^{-\epsilon\lambda_m}, \quad \forall \ n, m \in \mathbb{N} \quad k = 0, 1, 2, \dots, \mu_n - 1 \quad j = 0, 1, 2, \dots, \mu_m - 1.$$
(5.1)

Next, let $c_{n,k,m,j}$ be the value of $\langle U_{n,k}, U_{m,j} \rangle$ and let C be the infinite dimensional hermitian matrix with entries the $c_{n,k,m,j}$'s, that is C is the Gram matrix associated with $\{U_{n,k}\}$. From (2.3) and (5.1) we get

$$\sum_{n=1}^{\infty} \sum_{k=0}^{\mu_n - 1} \sum_{m=1}^{\infty} \sum_{j=0}^{\mu_m - 1} |c_{n,k,m,j}| < \infty.$$

It then follows from Lemma 1 that our claim is valid.

Thus, the moment problem

$$\int_{-\infty}^{\infty} f(t)\overline{V_{n,k}(t)}e^{-2w(t)} dt = a_{n,k} \quad \forall \ n \in \mathbb{N} \quad \text{and} \quad k = 0, 1, 2, \dots, \mu_n - 1,$$

has a solution in H_{Λ} whenever $\sum_{n=1}^{\infty} \sum_{k=0}^{\mu_n-1} |a_{n,k}|^2 < \infty$. Now, if we let

$$a_{n,k} = \frac{1}{\lambda_n} \quad \forall \ n \in \mathbb{N} \quad \text{and} \quad k = 0, 1, \dots, \mu_n - 1,$$

then the density of Λ and relation (2.2) imply that

$$\sum_{n=1}^{\infty} \sum_{k=0}^{\mu_n - 1} |a_{n,k}|^2 = \sum_{n=1}^{\infty} \frac{\mu_n}{\lambda_n^2} < \infty.$$

Thus, $\{a_{n,k}\}$ belongs to the space $l^2(\mathbb{N})$. Hence, and recalling the definition of $V_{n,k}$, there is some function $f \in H_{\Lambda}$ so that

$$\int_{\infty}^{\infty} f(t) \left(\frac{t^k e^{\lambda_n t}}{d_{n,k} \lambda_n} \right) e^{-2w(t)} dt = \frac{1}{\lambda_n}, \quad \forall \ n \in \mathbb{N} \quad \text{and} \quad k = 0, 1, 2, \dots, \mu_n - 1.$$

Clearly now (3.4) holds.

Finally, since $f \in H_{\Lambda}$ it follows from Theorem 3 (Part I) that f extends analytically as an entire function admitting a Taylor–Dirichlet series representation. Our proof is now complete.

REFERENCES

- Anderson J. M., Binmore K. G. Closure theorems with applications to entire functions with gaps. Trans. Amer. Math. Soc., 1971. Vol. 161. P. 381–400. DOI: 10.2307/1995948
- Borichev A. On the closure of polynomials in weighted spaces of functions on the real line. Indiana Univ. Math. J., 2001. Vol. 50. No. 2. P. 829–846. DOI: 10.1512/iumj.2001.50.2044
- Casazza P., Christensen O., Li S., Lindner A. Riesz–Fischer sequences and lower frame bounds. Z. Anal. Anwend., 2002. Vol. 21. No. 2. P. 305–314. DOI: 10.4171/ZAA/1079
- Christensen O. An Introduction to Frames and Riesz Bases. Appl. Numer. Harmon. Anal. Basel: Birkhäuser, Springer, 2003. 440 p. DOI: 10.1007/978-0-8176-8224-8
- Malliavin P. Sur quelques procédés d'extrapolation. Acta Math., 1955. Vol. 93. P. 179–255. DOI: 10.1007/BF02392523
- Young R. M. An Introduction to Nonharmonic Fourier Series. Revised first edition. San Diego, CA: Academic Press, Inc., 2001. 234 p.
- Zikkos E. Completeness of an exponential system in weighted Banach spaces and closure of its linear span. J. Approx. Theory, 2007. Vol. 146. No. 1. P. 115–148. DOI: 10.1016/j.jat.2006.12.002
- 8. Zikkos E. The closed span of some exponential system in weighted Banach spaces on the real line and a moment problem. *Analysis Math.*, 2018. Vol. 44. No. 4. P. 605–630. DOI: 10.1007/s10476-018-0311-0