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Abstract: In this paper we have generalized eighth order mock theta functions, recently introduced by
Gordon and MacIntosh involving four independent variables. The idea of generalizing was to have four extra
parameters, which on specializing give known functions and thus these results hold for those known functions.
We have represented these generalized functions as g-integral. Thus on specializing we have the classical mock
theta functions represented as g-integral. The same is true for the multibasic expansion given.
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1. Introduction

The last gift to mathematics by Ramanujan was mock theta functions. In his last letter to
Hardy [5], Ramanujan introduced 17 functions and called them mock theta functions as they were
not theta functions and classified them as 4 functions of third order, 10 functions of fifth order and
3 functions of seventh order though Ramanujan did not say what he meant by “order” of mock
theta function. Later Watson [12] introduced 3 more mock theta functions of third order. Gordon
and McIntosh [7] gave eight more mock theta functions and called them of eighth order. Andrews
and Hickerson [3] said the “order” is connected with combinatorics interpretation. Andrews [1]
generalized five third order mock theta functions. Srivastava [11] generalized eighth order mock
theta function. Recently Choi [4] also generalized mock theta functions of third, fifth, sixth, seventh
and tenth order.

Motivated by Andrews’ generalization of five of seven third order mock theta functions and
Choi’s generalization, we have tried to generalize the eighth order mock theta functions by intro-
ducing four independent variables. The advantage is that by specializing the parameters we can
have known functions.

In this paper we have represented these generalized functions as g-integral and we have also
given the multibasic expansion. Thus we have on specializing the parameters, the classical mock
theta functions representation as g-integral and the multibasic expansion for generalized functions
reduced to classical mock theta function of eighth order.

2. Definitions and notations

The eighth order mock theta functions of Gordon and Mclntosh [7] are
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3. Generalized eighth order mock theta functions

The four variable generalization of the eighth order mock theta functions are
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Fort=0,a=1, =1 and z = 1 these functions reduce to classical mock theta functions.

4. Relation between generalized eighth order mock theta functions
The differential operator D, [8] is defined as
2Dy F(z,a) = F(z,0)) — F(2q, ).

By using the differential operator we shall connect the generalized eighth order mock theta
functions.
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Proposition 1. The following is true:

(1) DZ,tSO(taaaﬁaZ;Q) :Sl(t,a,ﬁ’z;q)a

(ii) ¢*D,Ti(t, o, B, 2;:q) = To(t, 2,00, B, 2;.q).
P roof. Proof of (i):
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which proves (ii). O

5. ¢-Integral representation for the generalized eighth order mock theta
functions

Thomae and Jackson [6, p. 19] defined g-integral
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n=0

using limiting case of g-beta integral, we have
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We now represent these generalized functions as g-integral. By specializing the parameters we have
the integral representation for classical mock theta functions.
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Theorem 1.
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Proof. A detailed proof for Sy(¢',, 3, 2;q) is given.The proofs of the other functions are
similar, so omitted.
Proof of (i): By definition
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which proves (i).
The proof of all the other functions is similar. Taking o = 1, § = 1 and z = 1 we have the
integral representation of the classical eighth order mock theta functions. O
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6. Multibasic expansion of generalized eighth order mock theta functions

The following bibasic expansion will be used to give multibasic expansion for the generalized
functions.

Theorem 2. The following is true:
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We will consider the following case of Theorem 2.
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Theorem 3. The multibasic hypergeometric expansion of these generalized functions are:
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P roof. We shall give the proof of (i) only, for others we will state the value of parameters.

Proof of (i): Taking a = t/q, b = ¢, p = q and
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The left hand side of (6.3) is equal to
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By taking a« = 1, § = 1 and z = 1 we have multibasic expansion of classical eighth order mock

theta functions.
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7. Special cases and Ramanujan’s cubic continued fraction

Proposition 2. We have the following special cases

(i) UO(O,—LL 1;q) = M
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Proof of (ii): Put t =0, a = -1, § =1, 2z =1 and replace ¢ = —¢ in (7.1), we have
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which proves (ii).
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Proof of (iii): Put t =0, a = —1, § =3, 2 = —1 and replace ¢ = —¢ in (7.1), we have

0 qn2+2n
Uo(0,-1,3,~1;—q) = »
n=0

(=4 ¢*)n
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Remark 1. Dividing (7.8) by (7.11), we have

Uo(0.-1.3,~Li—q) _ f(za.=¢") | a+d¢® ¢+d" @+

Up(0,-1,1,-1;—q)  f(—¢* —¢>) I+ 1 + 1 47

which is Ramanujan’s cubic continued fraction [2, (3.1.6), p. 86].

8. Conclusion

The advantage of the generalization presented in the paper is that by specializing the parameters
we can obtain known functions which connects mock theta functions with continued fractions. So
the results obtained for mock theta functions are reduced to continued fractions.
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