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Abstract: This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems
involving p(x)-Laplace type equation, namely

{

−div (a(|∇u|p(x))|∇u|p(x)−2∇u) = λf(x, u) in Ω,

n · a(|∇u|p(x))|∇u|p(x)−2∇u+ b(x)|u|p(x)−2u = g(x, u) on ∂Ω.

Our technical approach is based on variational methods, especially, the mountain pass theorem and the sym-
metric mountain pass theorem.

Keywords: p(x)-Laplacian, Mountain pass theorem, Multiple solutions, Critical point theory.

1. Introduction

In this paper we study the nonlinear elliptic boundary value problem with Robin conditions
{

−div (a(|∇u|p(x))|∇u|p(x)−2∇u) = λf(x, u) in Ω,

n · a(|∇u|p(x))|∇u|p(x)−2∇u+ b(x)|u|p(x)−2u = g(x, u) on ∂Ω,
(1.1)

where Ω is an open bounded subset of RN (N ≥ 2), with smooth boundary, n is the outer unit
normal vector on ∂Ω, b is a positive continuous function defined on R

N , p ∈ C+(Ω) with

1 < p− := inf
Ω
p(x) ≤ p+ := sup

Ω

p(x) < N

and p(x) < p∗(x) where

p∗(x) =





Np(x)

N − p(x)
if p(x) < N,

+∞ if p(x) ≥ N

for any x ∈ Ω. It is clear that the equation in question is elliptic since it describes phenomena that
do not change from moment to moment, and that the operator

Lu = −div (a(|∇u|p(x))|∇u|p(x)−2∇u)

is an elliptic operator in divergence form.
Recently, the study of differential equations and variational problems involving p(x)-growth

conditions have been extensively investigated and received much attention because they can be
presented as models for many physical phenomena which arouse in the study of elastic mechan-
ics [32], electro-rheological fluid dynamics [27] and image processing [6], electrical resistivity and
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polycrystal plasticity [3, 4] and continuum mechanics [2] etc, for an overview of this subject, and
for more details we refer readers to [11] and [5, 10] and the references therein. The existence of
nontrivial solutions to nonlinear elliptic boundary value problems has been extensively studied by
many researchers [1, 7, 14, 15, 18, 21, 23, 24] and references therein.

It is known that the extension p(x)-Laplace operator possesses more complicated structure than
the p-Laplacian. For example, it is inhomogeneous and usually it does not have the so-called first
eigenvalue, since the infimum of its spectrum is zero.

However, to understand the role of the variable exponent, well, although most of the materials
can be accurately modeled with the help of the classical Lebesgue and Sobolev spaces Lp and
W 1,p, where p is a fixed constant, there are some nonhomogeneous materials, for which this is not
adequate, e.g. the rheological fluids mentioned above, which are characterized by their ability to
drastically change their mechanical properties under the influence of an exterior electromagnetic
field. Thus it is necessary for the exponent p to be nonstandard, therefore, the spaces with variable
exponents are required. As an introduction and a history coverage to the subject of variable
exponent problems, we advice the reader to see the monograph [12] and the articles [16, 20].

Note that, the p(x)-Laplace operator in (1.1) is a special case of the divergence form operator
−div (a(|∇u|p(x))|∇u|p(x)−2∇u) which appears in many nonlinear diffusion problems, in particular
in the mathematical modeling of non-Newtonian fluids. When

a(t) = 1 +
t√

1 + t2

we have the generalized Capillary operator (which is essential in applied fields like industrial,
biomedical and pharmaceutical) initiated by W. Ni and J. Serrin [22].

Inspired by the works in [25] and [19], we study the existence and multiplicity of nontrivial solu-
tions the problem (1.1), via the mountain pass theorem and the Rabinowitz’s symmetric mountain
pass theorem [26].

We assume the following conditions:

(A0) The function a : R
+ → R is continuous and the mapping Θ : R

N → R, given by
Θ(ξ) = A(|ξ|p(x)) is strictly convex, where A is the primitive of a, that is

A(t) =

∫ t

0
a(s)ds.

(A1) There exist two constants 0 < L < K such that L ≤ a(t) ≤ K for all t ≥ 0.

We assume that f, g : Ω × R → R are of Carathéodory functions, f(x, ·) = g(x, ·) = 0 and
satisfy:

(F0) for all (x, t) ∈ Ω× R |f(x, t)| ≤ f1(x)|t|r(x)−1, such that

1 ≤ r− := inf
Ω
r(x) ≤ r+ := sup

Ω

r(x) < p− := inf
Ω
p(x) ≤ p+ := sup

Ω

p(x),

where f1 is nonnegative, measurable function and f1 ∈ L
p(x)

p(x)−r(x) (Ω);

(F1) for all (x, t) ∈ Ω× R |f(x, t)| ≥ f2(x)|t|α(x)−1,

1 ≤ α− : inf
Ω
α(x) ≤ α+ := sup

Ω

α(x) < r−,

where f2 > 0 in some nonempty open set O ⊂ Ω;



32 Hassan Belaouidel, Anass Ourraoui, Najib Tsouli

(G0) for all (x, t) ∈ ∂Ω× R, |g(x, t)| ≤ g1(x)|t|q(x)−1,

1 ≤ p+ < q− := inf
Ω
q(x) ≤ q+ := sup

Ω

q(x), q(x) < p∂(x),

where

p∂(x) = (p(x))∂ =





(N − 1)p(x)

N − p(x)
if p(x) < N,

+∞ if p(x) ≥ N

and there exists a positive constants Cg such that 0 ≤ g1 ≤ Cg;

(G1) for all (x, t) ∈ ∂Ω× R lim
t→0

g(x, t)t

|t|p+−1
= 0.

(G2) there exists µ > p+ such that µG(x, t) ≤ g(x, t)t for all (x, t) ∈ ∂Ω× R, where

G(x, t) =

∫ t

0
g(x, s)ds.

The main result of this paper is as follow.

Theorem 1. Assume that (A0)–(A1), (F0)–(F1) and (G0)–(G2) hold. Then there exists
λ∗ > 0 such that for every λ ∈]0, λ∗[, the problem (1.1) admits at least one nontrivial solution.
In addition, if we assume the following conditions:

(G3) there is a nonempty open set U ⊂ ∂Ω with G(x, t) > 0 for all (x, t) ∈ U × R
+,

(G4) the functions f and g are even,

then the problem (1.1) has infinitely many solutions for every λ > 0.

The remainder of this paper is organized as follows, in Section 2 we introduce some technical
results and required hypotheses in order to solve our problem, in Section 3 we state some and prove
the main results of this work.

2. Preliminaries

In the sequel, let p(x) ∈ C+(Ω), where

C+(Ω) =
{
h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω

}
.

The variable exponent Lebesgue space is defined by

Lp(x)(Ω) =
{
u : Ω → R measurable and

∫

Ω
|u(x)|p(x) dx < +∞

}

furnished with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
σ > 0 :

∫

Ω

∣∣∣
u(x)

σ

∣∣∣
p(x)

dx ≤ 1
}
.

Remark 1. Variable exponent Lebesgue spaces resemble to classical Lebesgue spaces in many
respects, they are separable Banach spaces and the Hölder inequality holds. The inclusions be-
tween Lebesgue spaces are also naturally generalized, that is, if 0 < mes (Ω) < ∞ and p, q are
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variable exponents such that p(x) < q(x) a. e. in Ω, then there exists a continuous embedding
Lq(x)(Ω) →֒ Lp(x)(Ω).

The variable exponent Sobolev space is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}

equipped with the norm

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Proposition 1 [16, 17]. The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable, uniformly convex,
reflexive Banach spaces. The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where q(x) is the conjugate
function of p(x), i.e.,

1

p(x)
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) we have

∣∣∣
∫

Ω
u(x)v(x)dx

∣∣∣ ≤
( 1

p−
+

1

q−

)
|u|p(x)|v|q(x).

Moreover, if h1, h2, h3 : Ω → (1,∞) are Lipschitz continuous functions such that

1

h1
+

1

h2
+

1

h3
= 1,

then for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω), w ∈ Lh3(x)(Ω), the following inequality holds (see [15,
Proposition 2.5]) ∫

Ω
|uvw|dx ≤

( 1

h−1
+

1

h−2
+

1

h−3

)
|u|h1(x)|v|h2(x)|w|h3(x).

Proposition 2 [13]. Let p(x) and q(x) be measurable functions such that p(x) ∈ L∞(Ω) and
1 ≤ p(x)q(x) ≤ ∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

|u|p(x)q(x) ≤ 1 ⇒ |u|p+p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p−p(x)q(x),

|u|p(x)q(x) ≥ 1 ⇒ |u|p−p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p+p(x)q(x).

In particular if p(x) = p is a constant, then

||u|p|q(x) = |u|ppq(x).

Proposition 3 [16, 17]. Assume that the boundary of Ω possesses the cone property and
p, r ∈ C+(Ω) such that r(x) ≤ p∗(x) (r(x) < p∗(x)) for all x ∈ Ω, then there is a continuous
(compact) embedding

W 1,p(x)(Ω) →֒ Lr(x)(Ω),

Proposition 4 [9]. For p ∈ C+(Ω) and such r ∈ C+(∂Ω) that r(x) ≤ p∂(x) (r(x) < p∂(x)) for
all x ∈ Ω, there is a continuous (compact) embedding

W 1,p(x)(Ω) →֒ Lr(x)(∂Ω).
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Proposition 5. [8, Theorem 2.1] For any u ∈W 1,p(x)(Ω), let

‖u‖∂ := |u|Lp(x)(∂Ω) + |∇u|Lp(x)(Ω).

Then ‖u‖∂ is a norm on W 1,p(x)(Ω) which is equivalent to

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Now, for any u ∈ X :=W 1,p(x)(Ω) define

‖u‖ := inf
{
σ > 0 :

∫

Ω

∣∣∣
∇u(x)
σ

∣∣∣
p(x)

dx+

∫

∂Ω
b(x)

∣∣∣
u(x)

σ

∣∣∣
p(x)

dσx ≤ 1
}
,

where b ∈ L∞(Ω) and dσx is the measure on the boundary ∂Ω. Then by Proposition 5, ‖ · ‖ is also
a norm on W 1,p(x)(Ω) which is equivalent to ‖ · ‖W 1,p(x)(Ω) and ‖ · ‖∂ , the proof of this statement
can be found in [8, p. 551]. Now, we introduce the modular ρ : X → R defined by

ρ(u) =

∫

Ω
|∇u|p(x)dx+

∫

∂Ω
b(x)|u(x)|p(x)dσx

for all u ∈ X. Here, we give some relations between the norm || · || and the modular ρ.

Proposition 6 [16]. For u ∈ X we have

(i) ‖u‖ < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1);

(ii) If ‖u‖ < 1 ⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;

(iii) If ‖u‖ > 1 ⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ .

Proposition 7 [29]. Suppose that f : Ω×R → R is a Carathéodory function and satisfies the
growth condition

|f(x, t)| ≤ c|t|α(x)/β(x) + h(x), for every x ∈ Ω, t ∈ R,

where α, β ∈ C+(Ω), c ≥ 0 is constant and h ∈ Lβ(x)(Ω). Then Nf (L
α(x)(Ω)) ⊆ Lβ(x)(Ω), where

Nf (u)(x) = f(x, u(x). Moreover, Nf is continuous from Lα(x)(Ω) into Lβ(x)(Ω) and maps bounded
set into bounded set.

As a consequence of Proposition 7, the Carathéodory function f defines an operator Nf which
is called the Nemytskii operator.

Definition 1. We say that u ∈ X is weak solution of (1.1) if
∫

Ω
a(|∇u|p(x))|∇u|p(x)−2∇u∇vdx+

∫

∂Ω
b(x)|u|p(x)−2uvdσx = λ

∫

Ω
f(x, u)vdx+

∫

∂Ω
g(x, u)vdσx

for all v ∈ X.

Now we introduce the Euler–Lagrange functional Iλ : X −→ R associated with problem (1.1)
defined by

Iλ(u) =

∫

Ω

1

p(x)
A(|∇u|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|u|p(x)dσx − λ

∫

Ω
F (x, u)dx −

∫

∂Ω
G(x, u)dσx,

where

F (x, t) :=

∫ t

0
f(x, s)ds.

Furthermore, the (weak) solutions of (1.1) are precisely the critical points of the functional Iλ.
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Lemma 1 [31] . Let

L(u) :=

∫

Ω

1

p(x)
A(|∇u|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|u|p(x)dσx.

Then the mapping L : X → X∗ is a strictly monotone, continuous bounded homeomorphism and is
of type (S+), namely assumptions un ⇀ u and lim sup

n→+∞
L(un)(un − u) ≤ 0, imply un → u.

By Proposition 7, we can see that the functional Iλ is well defined on X and Iλ ∈ C1(X,R)
with its Fréchet derivative is giving by

I
′

λ(u) · v =

∫

Ω
a(|∇u|p(x))|∇u|p(x)−2∇u∇vdx+

∫

∂Ω
b(x)|u|p(x)−2uvdσx

−λ
∫

Ω
f(x, u)vdx−

∫

∂Ω
g(x, u)vdσx

for all u, v ∈ X.

Let X be a real Banach space and let be a functional I ∈ C1(X,R). We say that I satisfies the
Palais-Smale condition on X ((PS)-condition, for short) if any sequence (un) ⊂ X with (I(un))
bounded and I ′(un) → 0 as n → ∞, possesses a convergent subsequence. By (PS)-sequence for
I we understand a sequence (un) ⊂ X which satisfies the conditions: (I(un)) is bounded and
I ′(un) → 0 as n→ ∞.

The main tools used in proving Theorem 1 are the well known mountain pass theorem and its
the symmetric mountain pass theorem.

Theorem 2 [26, Theorem 2.2]. Let X be a real Banach space and let I belong to C1(X,R)
satisfying the (PS)-condition. Suppose that I(0) = 0 and that the following conditions hold :

(I1) there exist ρ > 0 and ̺ > 0 such that I(u) ≥ ̺ for ‖u‖ = ρ;

(I2) there exists e ∈ X with ‖e‖ > ρ such that I(e) ≤ 0.

Let

Γ =
{
γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = e

}
, c = inf

γ∈Γ
max
0≤t≤1

I(γ(t)),

then, c is a critical value of I.

Theorem 3 [28, Theorem 2.1]. Let X be a real Banach space and let I belong to C1(X,R) be
even, satisfies (PS)-condition and I(0) = 0. If X = Y ⊕ Z with dimY <∞, and I satisfies

(I’1) there are constants ρ,> 0 such that I/∂Bρ∩Z ≥ 0

(I’2) there a finite dimensional subspace W ⊂ X, with dimY < dimW < ∞ and there is M > 0
such that max

u∈W
I(u) < M

(I’3) considering M > 0 given by (I’2), I satisfies (PS)c for 0 ≤ c ≤M .

Then I possesses at least dimW − dimY pairs of nontrivial critical points.
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3. Proof of Theorem 1

To prove Theorem 1 we recall some lemmas presented below.

Lemma 2. Assume that (A1), (F0) and (G2) hold. Then the functional Iλ satisfies the Palais–
Smale condition on X ((PS)-condition, for short) at any level d.

P r o o f. Let d ∈ R and let (un) ⊂ X be (PS) sequence for Iλ, then

Iλ(un) → d and I ′λ(un) → 0 as n→ ∞. (3.1)

First, we prove that sequence (un) is bounded in X. Suppose (un) unbounded, we may assume
‖un‖ → +∞ as n→ ∞.

By (2), (A1), (F0) and Proposition 6 we have

Iλ(un) =

∫

Ω

1

p(x)
A(|∇un|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|un|p(x)dσx

−λ
∫

Ω
F (x, un)dx−

∫

∂Ω
G(x, un)dσx

≥ L

p+

∫

Ω
|∇un|p(x)dx+

∫

∂Ω

1

p+
b(x)|un|p(x)dσx −

λ

r+

∫

Ω
f1(x)|un|r(x)dx−

∫

∂Ω
G(x, un)dσx

≥ min(L, 1)

p+
‖un‖p

− − λ

r+

∫

Ω
f1(x)|un|r(x)dx−

∫

∂Ω
G(x, un)dσx.

(3.2)

From (3.2), (F0) and Proposition 6 we obtain

1

µ
I
′

λ(un) · un =
1

µ

∫

Ω
a(|∇un|p(x))|∇un|p(x)dx+

1

µ

∫

∂Ω
b(x)|un|p(x)dσx

−λ
µ

∫

Ω
f(x, un)undx− 1

µ

∫

∂Ω
g(x, un)undσx

≥ min(L, 1)

µ
‖un‖p

− − λ

µ

∫

Ω
f1(x)|un|r(x)dx− 1

µ

∫

∂Ω
g(x, un)undσx.

(3.3)

Meanwhile, according to (F0), Proposition 4 and Proposition 2 it yields
∫

Ω
f1(x)|un|r(x)dx ≤

∫

Ω
|f1(x)||un|r(x)dx ≤ |f1|

L
p(x)

p(x)−r(x) (Ω)

∣∣∣|un|r(x)
∣∣∣
p(x)
r(x)

≤ |f1|
L

p(x)
p(x)−r(x) (Ω)

max
(
|un|r

−

p(x), |un|r
+

p(x)

)
≤ |f1|

L
p(x)

p(x)−r(x) (Ω)
max

(
Cr−‖un‖r

−

, Cr+‖un‖r
+
)
,

(3.4)

where Cr− and Cr+ are constants of compact embedding X →֒ Lp(x)(Ω). Using (3.1), (3.2), (3.3),
(3.4) and (G2) we obtain

d+ 1 + ‖un‖ ≥ Iλ(un)−
1

µ
I
′

λ(un).un ≥ min(L, 1)

p+
‖un‖p

− − λ

r+

∫

Ω
f1(x)|un|r(x)dx

−
∫

∂Ω
G(x, un)dσx−

min(L, 1)

µ
‖un‖p

−−λ
µ

∫

Ω
f1(x)|un|r(x)dx−

1

µ

∫

∂Ω
g(x, un)undσx

≥ min(L, 1)
( 1

p+
− 1

µ

)
‖un‖p

−−
( λ

r+
+
λ

µ

)∫

Ω
f1(x)|un|r(x)dx+

∫

∂Ω

( 1

µ
g(x, un)un−G(x, un)

)
dσx

≥ min(L, 1)
( 1

p+
− 1

µ

)
‖un‖p

− −
( λ

r+
+
λ

µ

)
|f1|

L
p(x)

p(x)−r(x) (Ω)
Cr+‖un‖r

+
,

(3.5)
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where d is defined in (3.1). Since p− ≥ r+ (un) is bounded.

Now, with standard arguments, we prove that any (PS)d sequence (un) in X has a convergent
subsequence. Indeed, the space X is a Banach reflexive space then there exists u ∈ X such that,
up to subsequence still denoted by (un) and by the Sobolev embedding, we obtain:

• un ⇀ u in X as n→ ∞;

• un(x) → u(x) a.e. in Ω as n→ ∞;

• un → u in Lp(x)(Ω) as n→ ∞;

• un → u in L
p(x)

p(x)−1 (Ω) as n→ ∞. �

Proposition 8. If un ⇀ u in X as n→ ∞, then

lim
n→∞

∫

Ω
f1(x)|un|r(x)−1(un − u)dx = 0, (3.6)

and

lim
n→∞

∫

∂Ω
g1(x)|un|q(x)−1(un − u)dσx = 0. (3.7)

P r o o f. To demonstrate (3.6), we use Propositions 1–4 we give

∫

Ω
f1(x)|un|r(x)−1(un − u)dx ≤

∫

Ω
|f1(x)||un|r(x)−1|un − u|dx

≤ 3C |f1|
L

p(x)
p(x)−r(x) (Ω)

max
(
|un|r

−−1
p(x) , |un|

r+−1
p(x)

)
|un − u|p(x) ,

where C is positive constant. By the compact embedding X →֒ Lp(x)(Ω) and the inequality
||un|p(x) − |u|p(x)| ≤ |un − u|p(x), we obtain |un − u|p(x) → 0 in Lp(x)(Ω) and |un|p(x) → |u|p(x).

Similar arguments establish (3.7).

Now, in virtue of (3.1) and Proposition 8, we have

lim sup
n→∞

∫

Ω
a(|∇un|p(x))|∇un|p(x)−2∇un(∇un −∇u)dx+

∫

∂Ω
b(x)|un|p(x)−2un(un − u)dσx

= lim sup
n→∞

I
′

λ(un) · un + lim sup
n→∞

λ

∫

Ω
f(x, un)(un − u)dx+ lim sup

n→∞

∫

∂Ω
g(x, un)(un − u)dσx = 0.

Finally, by Lemma 1 un → u in X.

To finish the proof of the Theorem 1, we check the geometrical conditions of mountain pass
Theorem 2 for Iλ. Indeed

(I1) since the embeddings X →֒ Li(x)(Ω) (i := p, r, q) and X →֒ Li(x)(∂Ω) (i := p, q) is are
compact, there exist positive constants Ci such that

|u|i(x) ≤ Ci‖u‖. (3.8)

From (G0)–(G1) it follows, for all ε > 0, there exists Cε > 0, such that

G(x, u) ≤ ε

p+
|u|p+ + Cε|u|q(x), for all (x, t) ∈ ∂Ω× R, (3.9)
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thus, for u ∈ X with ‖ u ‖≤ 1. By (A1), (3.2), (3.4), (3.8) and (3.9), we have

Iλ(u) ≥
min(L, 1)

p+
‖u‖p+ −

λCr |f1|Lp(x)/(p(x)−r(x))(Ω)

r−
‖un‖r

+ − εCεCp
p+

‖u‖p+ − CqCg‖u‖q
+

≥ ‖u‖p+
[
C1 − λC2‖u‖r

+−p+ −C3‖u‖q
+−p+

]
,

(3.10)

where

C1 =
min(L, 1)

p+
− εCεCp

p+
, C2 =

Cr |f1|Lp(x)/(p(x)−r(x))(Ω)

r−
, C3 = CqCg.

If ρ = ‖u‖, we obtain

Iλ(u) ≥ ρp
+

ψ(ρ)︷ ︸︸ ︷[
C1 − λC2ρ

r+−p+ − C3ρ
q+−p+

]
. (3.11)

A straightforward computation shows that the maximum of the function ψ is

ρm =

(
q+(p+ − r+)λC2

r+(q+ − r+)C3

)
.

Inserting this into equation (3.11), we find that the right side is zero for

λ∗ :=
C3

C2
ρq

+−r+

m − C1

C2
ρp

+−r+

m .

So, there exist ρ > 0 and ̺ > 0 such that Iλ(u) ≥ ̺ for ‖u‖ = ρ, from which the demonstration
of (I1) is completed.

Now, put

h(τ) = τ−µG(x, τt)−G(x, t) ∀t ≥ 1.

We have

h
′

(t) = t−µ−1 (g(x, tτ)tτ −G(x, tτ)) ≥ 0 ∀t ≥ 1

by (G2). Hence, h(τ) ≥ h(1) for all τ ≥ 1 that is,

G(x, τt) ≥ τµG(x, t) ∀(x, t) ∈ ∂Ω× R. (3.12)

Let u ∈ X, for t > 1, by (A0) and (3.12), we have

Iλ(tu) =

∫

Ω

1

p(x)
A(|∇tu|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|tu|p(x)dσx − λ

∫

Ω
F (x, tu)dx −

∫

∂Ω
G(x, tu)dσx

≤ tp
+

(∫

Ω

1

p(x)
A(|∇u|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|u|p(x)dσx

)

+tr
+ λ

r+

∫

Ω
f1(x)|u|r(x)dx− C4t

µ

∫

∂Ω

[
ε

p+
|u|p+ + Cε|u|q(x)

]
dσx.

This shows that Iλ(tu) < 0.

Since Iλ(0) = 0, the mountain pass lemma implies the existence of a nontrivial weak solution u1
with Iλ(u1) ≥ ̺.

Hence problem (1.1) has at least one nontrivial weak solution in X.

To complete the proof of the Theorem 1, one must check the conditions of the Theorem 3. So
we need some lemmas which we recall below.
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Remark 2. [30] As the Sobolev space X is a reflexive and separable Banach space, there exist
(en)n∈N∗ ⊆ X and (fn)n∈N∗ ⊆ X∗ such that fn(em) = δnm for any n,m ∈ N

∗ and

X = span{en : n ∈ N∗}, X∗ = span{fn : n ∈ N∗}w
∗

.

For k ∈ N
∗ denote by Xk = span{ek}, Yk = ⊕k

j=1Xj , Zk = ⊕∞
k Xj.

Lemma 3. Assume that (A0)–(A1), (F0)–(F1) and (G0)−(G1) hold. Then there exists λ̃ > 0,
k ∈ N and ρ, θ > 0 such that Iλ/∂Bρ ∩Xk ≥ θ for all 0 < λ < λ̃.

P r o o f. Similarly to (3.10), we have

Iλ(u) ≥ ‖u‖p+
[
C1 − λC2‖u‖r

+−p+
]
− C3‖u‖q

+
.

Taking ρ = ‖u‖, we get

Iλ(u) ≥ ρp
+[
C1 − λC2ρ

r+−p+
]
− C3ρ

q+ .

Next, we take λ̃ = C1/C2 · ρp+−r+ > 0 so that

Iλ(u) ≥ ρp
+[
C1 − λC2ρ

r+−p+
]
−C3ρ

q+ > 0,

which shows that I verifies the condition (I’1) in Theorem 3. �

Finally, to show the condition (I’2) in Theorem 3, we use the following lemma.

Lemma 4. Assume that (A0)–(A1) and (G2)–(G3) hold. Then, given m ∈ N, there ex-
ist a subspace W of X and a constant Mm > 0, independent of λ, such that dimW = m and
max
u∈W

Iλ(u) < Mm.

P r o o f. Let O and U be defined respectively as in (F1) and in (G3). We can build the space
W , in the same way as in [28, Lemma 4.3]. So, we consider v1, . . . . . . , vm such that vi ∈ C∞

O (Ω),
supp vi ∩ supp vj = ∅, supp vi ∩O 6= ∅ and supp vi ∩U 6= ∅, where i = 1, . . . ,m, j = 1, . . . ,m, i 6= j.

By (2), we have

Iλ(u) =

∫

Ω

1

p(x)
A(|∇u|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|u|p(x)dσx − λ

∫

Ω
F (x, u)dx−

∫

∂Ω
G(x, u)dσx

≤ max(1,K)

p−
max(‖u‖p− , ‖u‖p+)− λ

∫

Ω
F (x, u)dx−

∫

∂Ω
G(x, u)dσx,

where K is defined in (A0).
For u ∈W , since suppu ∩O 6= ∅ we get

Iλ(u) ≤
max(1,K)

p−
max(‖u‖p− , ‖u‖p+)−

∫

∂Ω
G(x, u)dσx = Ĩ(u).

Since
max

u∈W\{0}
Iλ(u) ≤ max

u∈W\{0}
Ĩ(u) = max

v∈∂B1(0)∩W\{0}
Ĩ(v).

For t > 0 and u ∈ ∂B1(0) ∩W\{0} and ε small enough, by (F1), (G2)–(G3) and (3.9), we obtain

Ĩ(tu) =
max(1,K)

p−
max(‖tu‖p− , ‖tu‖p+)−

∫

∂Ω
G(x, tu)dσx

≤ C5‖tu‖p
− − tµ

∫

∂Ω

(
ε

p+
|u|p+ + Cε|u|q(x)

)
dσx ≤ C5t

p−‖u‖p− −C6t
µ‖u‖q− ,
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where C5 = max(1,K)/p− and C6 is the constant of embedding X →֒ Lq(x)(∂Ω),

lim
t→+∞

Ĩ(tu) ≤ lim
t→+∞

[
C5t

p− − C6t
µ
]
. (3.13)

Since µ > p−, by (3.13) we get that there exist a subspace W of X and a constant Mm > 0,
independent of λ, such that dimW = m and max

u∈W
Iλ(u) < Mm. The proof of Lemma 4 is complete.�

According to Lemma 2, we also have that Iλ satisfies (I’3). Since Iλ(0) = 0 and Iλ is even, we
may apply Theorem 3 to conclude that Iλ has infinitely many nontrivial solutions.

Acknowledgements

The authors would like to thank the referees for their valuable comments which improved the
presentation of the original manuscript.

REFERENCES

1. Allaoui M., El Amrouss A., Ourraoui A. Existence of infinitely many solutions for a Steklov problem
involving the p(x)-Laplace operator. Electron. J. Qual. Theory Differ. Equ., 2014. No. 20. P. 1–10.
DOI: 10.14232/ejqtde.2014.1.20

2. Antontsev S., Shmarev S., Chapter 1. Elliptic equations with anisotropic nonlinearity and nonstandard
growth conditions. In: Handbook of Differential Equations, Stationary Partial Differ. Equ. Chipot M.,
Quittner P. (eds.), 2006. Vol. 3. P. 1–100. DOI: 10.1016/S1874-5733(06)80005-7
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