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Abstract: The Neumann boundary value problem (BVP) in a unit circle is discussed. For the solution of the
Neumann BVP, we built a method employing series representation of given 2π-periodic continuous boundary
function by interpolating wavelets consisting of trigonometric polynomials. It is convenient to use the method
due to the fact that such series is easy to extend to harmonic polynomials inside a circle. Moreover, coefficients
of the series have an easy-to-calculate form. The representation by the interpolating wavelets is constructed
by using an interpolation projection to subspaces of a multiresolution analysis with basis 2π-periodic scaling
functions (more exactly, their binary rational compressions and shifts). That functions were developed by
Subbotin and Chernykh on the basis of Meyer-type wavelets. We will use three kinds of such functions, where
two out of the three generates systems, which are orthogonal and simultaneous interpolating on uniform grids
of the corresponding scale and the last one generates only interpolating on the same uniform grids system. As a
result, using the interpolation property of wavelets mentioned above, we obtain the exact representation of the
solution for the Neumann BVP by series of that wavelets and numerical bound of the approximation of solution
by partial sum of such series.
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Introduction

Subbotin and Chernykh [1] constructed real 2π-periodic orthogonal wavelets and applied them
to represent and analyze solutions of Dirichlet, Neumann, and Poisson boundary value problems for
harmonic and biharmonic functions. In [2] the Dirichlet BVP in a unit circle was solved by means
of interpolating-orthogonal periodic wavelets from [3]. In the present paper, we propose to use the
same wavelets for solving the Neumann BVP in a unit circle. Moreover, our main interest is the
exact representation of the solution for the Neumann BVP by series of wavelet bases and behavior of
partial sums of such series. For the sake of convenience, we give the reader an adequate background
for further study and partially repeat sections with interpolating and interpolating-orthogonal 2π-
periodic wavelet construction from [1, 3].

1. Preliminaries

Consideration of autocorrelation functions for orthonormal scaling functions instead of
orthonormal scaling functions is commonly used construction technique for interpolating wavelets
in R. It is equivalent to replacement of scaling ϕ(x) function by function, which Fourier transform
coincides with |ϕ̂(ω)|2.

Let ε be a fixed number from (0, 1/3] and let ϕ̂ε(ω) be a Fourier transform of Meyer-type
(see [4, 5]) function:





ϕ̂ε(ω) = 0, |ω| > (1 + ε)/2;
ϕ̂ε(ω) = 1, |ω| ≤ (1− ε)/2;

ϕ̂2
ε(ω) + ϕ̂2

ε(ω − 1) = 1, (1− ε)/2 < ω < (1 + ε)/2.
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We also require that the function ϕ̂2
ε(ω) is even and smooth on R with the symmetry center of its

graph on the interval
(
(1− ε)/2, (1 + ε)/2

)
at the point ω = 1/2. Define functions ϕs(x) (s = 1, 2)

as in [1] and function ϕ3(x) as in [2] such that:

ϕ̂1(ω) =
1

2





(1 + ϕ̂ε(ω)− ϕ̂ε(ω − 1)− ϕ̂ε(ω + 1)) + i(signω)
√

2β(ω),
|ω| < (1 + ε)/2,

0,
|ω| ≥ (1 + ε)/2,

ϕ̂2(ω) = ϕ̂2
ε(ω) + i(signω)β(ω), β(ω) = ϕ̂ε(ω)

(
ϕ̂ε(ω − 1) + ϕ̂ε(ω + 1)

)
,

ϕ̂3(ω) = ϕ̂2
ε(ω).

Here β(ω) is a smooth even function on R vanishing together with its derivative at the points
ω = (−1±ε)/2 and ω = (1±ε)/2, with the support {

(
(−1−ε)/2, (−1+ε)/2

)
∪
(
(1−ε)/2, (1+ε)/2

)
}

and even on intervals ±
(
(1 − ε)/2, (1 + ε)/2

)
with respect to their centers ω = ±1/2. Functions

ϕs(x)(s = 1, 2, 3) generates interpolating in C(R) systems {ϕs(2
jx−k) : k ∈ Z} (j ∈ Z) on the grids

{l/2j : l ∈ Z} (j ∈ Z). For s = 1, 2 these systems are also orthogonal in L2(R). Unless otherwise
stipulated, throughout the paper s = 1, 2, 3.

The 1-periodization process of the function ϕs(2
jx)

Pe1ϕs(2
jx) =

∑

µ∈Z

ϕs(2
j(x+ µ)) =: Φj,0

s (2πx), j ∈ Z (1.1)

converges uniformly on the interval [−1/2, 1/2] (see [1]). Calculating the coefficients aν in the
expansion of the function Φj,0

s (2πx) by the trigonometric system {e2πiνx : ν ∈ Z}, we get

Φj,0
s (2πx) =

∑

ν∈Z

aνe
2πiνx, j ∈ Z. (1.2)

Using (1.1), we find all coefficients aν (ν ∈ Z)

aν =

1∫

0

∑

µ∈Z

ϕs(2
j(x+ µ))e−2πiνxdx =

∑

µ∈Z

1∫

0

ϕs(2
j(x+ µ))e−2πiνxdx =

=
[
substitution: x+ µ = t

]∑

µ∈Z

µ+1∫

µ

ϕs(2
jt)e−2πiν(t−µ)dt =

=

∫

R

ϕs(2
jt)e−2πiνtdt = ϕ̂s(2jt) = 2−jϕ̂s

( ν

2j

)
.

Substituting the coefficients aν (ν ∈ Z) in (1.2), we obtain:

Φj,0
s (2πx) = 2−j

∑

ν∈∆j
ε∩Z

ϕ̂s

( ν

2j

)
e2πiνx, j ∈ Z,

where ∆j
ε = 2j

(
(−1 − ε)/2, (1 + ε)/2

)
. Replacing the variable x by x/(2π), we obtain 2π-periodic

wavelet systems

{
Φj,k
s (x) := Φj,0

s

(
x− 2πk

2j

)
= 2−j

∑

ν∈∆j
ε∩Z

ϕ̂s

( ν

2j

)
eiν(x−2πk/2j) : k ∈ Z

}
, j ∈ Z, (1.3)
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which are interpolating on the grids {xlj := 2πl/2j : l = 0, 2j − 1} for s = 1, 2, 3 and orthogonal

in L2(R) for s = 1, 2.
It is easy to see, that for n ∈ Z

Φj,k+2jn
s (x) = 2−j

∑

ν∈∆j
ε∩Z

ϕ̂s

( ν

2j

)
eiν(x−2πk/2j−2πn) = Φj,k

s (x).

So the sequence of spaces (1.3) has only 2j distinct linearly independent terms. Hence, we can
assume in the following discussion that k = 0, 2j − 1.

Define system of spaces {V j
s := span{Φj,k

s (x) : k = 0, 2j − 1} : j ∈ Z}. As follows from
∆j

ε ∩ Z = {0} for j ≤ 0 and ϕ̂s(0) = 1, we see that

Φ0,0
s (x) =

∑

ν∈∆0
ε∩Z

ϕ̂s(ν)e
iνx = 1

and
Φj,0
s (x) = 2−j

∑

ν∈∆j
ε∩Z

ϕ̂s

( ν

2j

)
eiνx = 2−j , j < 0,

i.e., for all integers such that j ≤ 0 and for all k ∈ Z relation Φj,k
s (x) = Φj,0

s (x) = const holds and
thus we can consider the system of spaces {V j

s } only for j ∈ N∪{0}. Further, for j ∈ N∪{0} define

spaces W j
s as direct complement of V j

s to V j
s+1 with the interpolation system {Ψj,k

s (x) : k = 0, 2j − 1}
on the grid {x2l+1

j+1 : l = 0, 2j − 1}, which is interpolating basis of 2π-periodic continuous functions.

Show that the Ψj,k
s (x) = Φj+1,2k+1

s (x) holds for all j ∈ N ∪ {0} and for all k = 0, 2j − 1. Since
V j
s ⊂ V j+1

s (j ∈ N ∪ {0}), we see that

Φj,k
s (x) =

2j+1−1∑

n=0

bnΦ
j+1,n
s (x), j ∈ N ∪ {0}, k = 0, 2j − 1. (1.4)

Using interpolating condition of basis {Φj+1,k
s (x) : k=0, 2j+1 − 1} on the grid {xlj+1 : l=0, 2j+1 − 1}

and assuming x := 2πl/2j+1 in (1.4), we find the coefficients bn (n = 0, 2j+1 − 1):

Φj,k
s

( 2πl

2j+1

)
=

2j+1−1∑

n=0

bnΦ
j+1,n
s

( 2πl

2j+1

)
=

2j+1−1∑

n=0

bnδn,l, l = 0, 2j+1 − 1,

so

bn = Φj,k
s

( 2πn

2j+1

)
, n = 0, 2j+1 − 1.

In view of bn obtained, the sum on the right side of the expression (1.4) may be written as two sums
over even and odd indices

Φj,k
s (x) =

2j+1−1∑

n=0

Φj,k
s

( 2πn

2j+1

)
Φj+1,n
s (x) =

2j−1∑

n=0

Φj,k
s

(2πn
2j

)
Φj+1,2n
s (x)+

+

2j−1∑

n=0

Φj,k
s

(2π(2n + 1)

2j+1

)
Φj+1,2n+1
s (x) = Φj,k

s

(2πk
2j

)

︸ ︷︷ ︸
=1

Φj+1,2k
s (x)+

+
2j−1∑

n=0

Φj,k
s

(2π(2n + 1)

2j+1

)
Φj+1,2n+1
s (x).
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As a result, we have

Φj,k
s (x) = Φj+1,2k

s (x) +

2j−1∑

n=0

Φj,k
s

(2π(2n + 1)

2j+1

)
Φj+1,2n+1
s (x), j ∈ N ∪ {0}, k = 0, 2j − 1,

i.e.,

Φj+1,2k
s (x)︸ ︷︷ ︸
∈V j+1

s

= Φj,k
s (x)︸ ︷︷ ︸
∈V j

s

−
2j−1∑

n=0

Φj,k
s

(2π(2n + 1)

2j+1

)
Φj+1,2n+1
s (x), j ∈ N ∪ {0}, k = 0, 2j − 1,

and it implies that

V j+1
s =

{ 2j+1−1∑

k=0

cj+1, kΦ
j+1, k
s (x) : cj+1, k ∈ R

}
=

=
{ 2j−1∑

k=0

cj+1, 2kΦ
j+1, 2k
s (x) +

2j−1∑

k=0

cj+1, 2k+1Φ
j+1,2k+1
s (x)

}
=

{ 2j−1∑

k=0

cj+1, 2kΦ
j, k
s (x)−

−
2j−1∑

k=0

cj+1, 2k

2j−1∑

n=0

Φj, k
s

(2π(2n + 1)

2j+1

)
Φj+1,2n+1
s (x) +

2j−1∑

k=0

cj+1, 2k+1Φ
j+1, 2k+1
s (x)

}
=

=
{ 2j−1∑

k=0

cj+1, 2kΦ
j, k
s (x)−

2j−1∑

n=0

Φj+1,2n+1
s (x)

2j−1∑

k=0

cj+1, 2kΦ
j, k
s

(2π(2n + 1)

2j+1

)
+

+

2j−1∑

n=0

cj+1, 2n+1Φ
j+1, 2n+1
s (x)

}
=

{ 2j−1∑

k=0

cj+1, 2kΦ
j,k
s (x) +

2j−1∑

n=0

dj,nΦ
j+1,2n+1
s (x) :

dj,n = −
2j−1∑

k=0

cj+1, 2kΦ
j, k
s

(2π(2n + 1)

2j+1

)
+ cj+1, 2n+1

}
= V j

s ⊕W j
s .

In view of definitions of spaces V j
s and W j

s , for all j ∈ N ∪ {0} and for all k = 0, 2j − 1 relation

Ψj,k
s (x) = Φj+1, 2k+1

s (x)

holds.

Denote the interpolation projection of a function f ∈ C2π (the space of continuous 2π-periodic
functions) onto the V j

s by

Ss,2j(x; f) =

2j−1∑

k=0

f
(2πk

2j

)
Φj,k
s (x), j ∈ N ∪ {0}. (1.5)

Since
⋃∞

j=0 V
j
s = C2π, for f ∈ C2π we have

Ss,2j(x; f) ⇒
R

f(x), (1.6)

f(x) = f(0) +
+∞∑

j=0

2j−1∑

k=0

cj,kΨ
j,k
s (x) = f(0) +

+∞∑

j=0

2j−1∑

k=0

cj,kΦ
j+1,2k+1
s (x). (1.7)
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Find all coefficients cj,k, (j ∈ N ∪ {0}, k = 0, 2j − 1) from (1.7). Because of Ss,2j(x; f) ∈ V j
s ,

Ss,2j+1(x; f) ∈ V j+1
s and definition of spaces W j

s we have Ss,2j+1(x; f)− Ss,2j(x; f) ∈ W j
s , i.e.,

(
Ss,2j+1(x; f)− Ss,2j(x; f)

)∣∣∣
x=x2l+1

j+1

=

2j−1∑

k=0

cj,kΦ
j+1,2k+1
s (x2l+1

j+1 ) =

2j−1∑

k=0

cj,kδk,l = cj,l,

where j ∈ N ∪ {0} and l = 0, 2j − 1. Using definition (1.5), we rewrite Ss,2j+1(x; f) and take

x := x2l+1
j+1

Ss,2j+1(x; f)
∣∣∣
x=x2l+1

j+1

=

2j+1−1∑

k=0

f
( 2πk

2j+1

)
Φj+1,k
s (x2l+1

j+1 ) =

2j+1−1∑

k=0

f
( 2πk

2j+1

)
δk,2l+1 = f(x2l+1

j+1 ).

Consequently,

cj,l = Ss,2j+1(x2l+1
j+1 ; f)− Ss,2j(x

2l+1
j+1 ; f) = f(x2l+1

j+1 )− Ss,2j(x
2l+1
j+1 ; f), j ∈ N ∪ {0}, l = 0, 2j − 1.

With (1.3), (1.7) and preceding expression the following relation holds for a function f ∈ C2π

f(x) = f(0) +

+∞∑

j=0

2j−1∑

k=0

cj,kΨ
j,k
s (x) = f(0) +

+∞∑

j=0

2j−1∑

k=0

(
f(x2k+1

j+1 )− Ss,2j(x
2k+1
j+1 ; f)

)
×

× Φj+1,2k+1
s (x) = f(0) +

+∞∑

j=0

2j−1∑

k=0

(
f(x2k+1

j+1 )− Ss,2j(x
2k+1
j+1 ; f)

)
2−(j+1)×

×
∑

ν∈∆j+1
ε ∩Z

ϕ̂s

( ν

2j+1

)
eiν(x−2π(2k+1)/2j+1).

(1.8)

The definition of W j
s imply V j

s = V 0
s ⊕ (⊕j−1

l=0W
l
s). Then Ss,2j(x; f) is the partial sum of order 2j

for (1.7) and from (1.6) series (1.7) converges uniformly. Thus for J ∈ Z

Ss,2J (x; f) = f(0) +

J−1∑

j=0

2j−1∑

k=0

(
f(x2k+1

j+1 )− Ss,2j(x
2k+1
j+1 ; f)

)
Φj+1,2k+1
s (x) (1.9)

and as J → ∞
Ss,2J (x; f) ⇒

R

f(x).

2. Application to the solution of the Neumann BVP in a circle

Setting of the Neumann BVP in the unit circle K1 (see, for example, [6]):




∆U(r, x) =
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2
∂2U

∂x2
= 0, U ∈ C(1)(K1) ∩ C(2)(K1),

∂U

∂r
(1, x) = g1(x) ∈ C2π,

(2.1)

where reix (0 ≤ r < 1, 0 ≤ x < 2π) are points of the unit circle K1 centered at the origin of
the polar coordinate system. It has been well known that necessary condition of solvability of the
Neumann problem is

2π∫

0

g1(x)dx = 0, (2.2)
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and the problem have a unique solution up to an additive constant.

Define harmonic in the unit circle polynomials Φj,k
s (r, x):

Φj,k
s (r, x) := 2−j

∑

ν∈∆j
ε∩Z

ϕ̂s

( ν

2j

)
r|ν|eiν(x−2πk/2j), j ∈ N ∪ {0}, k = 0, 2j − 1

and consider series

U(1, 0) +

+∞∑

j=0

2j−1∑

k=0

(
U(1, ·) − Ss,2j(1, ·;U(1, ·))

)
(x2k+1

j+1 )Φj+1,2k+1
s (1, x).

Since U(r, x) is a harmonic in the unit circle function with continuous boundary value U(1, x), it
follows that the above series converges uniformly on the boundary of K1 by taking into account (1.8)
and (1.9) (where for f(x) we take U(1, x)). Because of maximum principle for harmonic functions,
we obtain the following representation for U(r, x) in form of uniformly convergent in K1 series

U(r, x) = U(1, 0) +

+∞∑

j=0

2j−1∑

k=0

(
U(1, ·) − Ss,2j(1, ·;U(1, ·))

)
(x2k+1

j+1 )Φj+1,2k+1
s (r, x) =

= U(1, 0) +
+∞∑

j=0

2j−1∑

k=0

(
U(1, ·) − Ss,2j(1, ·;U(1, ·))

)
(x2k+1

j+1 )2−(j+1)×

×
∑

ν∈∆j+1
ε ∩Z

ϕ̂s

( ν

2j+1

)
r|ν|eiν(x−2π(2k+1)/2j+1).

(2.3)

Using (1.8), we have the following representation for function g1(x) ∈ C2π in form of uniformly
convergent in K1 series

g1(x) = g1(0) +
+∞∑

j=0

2j−1∑

k=0

(
g1(·)− Ss,2j(·; g1)

)
(x2k+1

j+1 )2−(j+1)
∑

ν∈∆j+1
ε ∩Z

ϕ̂s

( ν

2j+1

)
eiν(x−2π(2k+1)/2j+1).

We may extend terms of the series into the interior of the unit circle to harmonic polynomials
cj,k(g1)Φ

j,k
s (r, x) and, consequently, we may extend the series into the interior of the unit circle to

harmonic in K1 and in continuous K1 function.

g1(r, x) := g1(0) +
+∞∑

j=0

2j−1∑

k=0

(
g1(·)− Ss,2j(·; g1)

)
(x2k+1

j+1 )2−(j+1)×

×
∑

ν∈∆j+1
ε ∩Z

ϕ̂s

( ν

2j+1

)
r|ν|eiν(x−2π(2k+1)/2j+1).

(2.4)

Because of series in (2.3) converges uniformly, we can perform a term-by-term differentiation
with respect to r and multiplication by r and as result we get

r
∂U

∂r
(r, x) =

+∞∑

j=0

2j−1∑

k=0

(
U(1, ·) − Ss,2j(1, ·;U(1, ·))

)
(x2k+1

j+1 )2−(j+1)×

×
∑

ν∈∆j+1
ε ∩Z

ϕ̂s

( ν

2j+1

)
|ν|r|ν|eiν(x−2π(2k+1)/2j+1).
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As is easy to see that this function is harmonic in K1. In view of setting of the Neumann BVP, we

have
∂U

∂r
(r, x)

∣∣
r=1

= g1(x), this implies that for 0 ≤ r < 1 the equality r
∂U

∂r
(r, x) = g1(r, x) holds

as equality of two harmonic functions which are equal at the boundary of K1. Hence

r
∂U

∂r
(r, x) = g1(0) +

+∞∑

j=0

2j−1∑

k=0

(
g1(·)− Ss,2j(·; g1)

)
(x2k+1

j+1 )2−(j+1)×

×
∑

ν∈∆j+1
ε ∩Z

ϕ̂s

( ν

2j+1

)
r|ν|eiν(x−2π(2k+1)/2j+1).

In consequence of (2.2), we also have

2π∫

0

g1(r, x)dx = 0. (2.5)

Indeed if we expand function g1(r, x) = r
∂U

∂r
(r, x) in a series by system {r|n|einx : n ∈ Z}

(for instance, with the use of Poisson kernel), then we get for 0 ≤ r < 1

g1(r, x) =
1

2π

2π∫

0

g1(1, t)Pr(x− t)dt =
1

2π

2π∫

0

∑

n∈Z

g1(t)r
|n|ein(x−t)dt.

Interchanging of integration and summation and using (2.2), we arrive at

∑

n∈Z\{0}

( 1

2π

2π∫

0

g1(1, t)e
−intdt

)
r|n|einx,

resulting in (2.5).

Thus, using (2.5) and taking into account ϕ̂s(0) = 1, we obtain

g1(0) +

+∞∑

j=0

2j−1∑

k=0

(
g1(·)− Ss,2j(·; g1)

)
(x2k+1

j+1 )2−(j+1) = 0,

and numerical series on the left side of the equality converges. Consequently, the following equality
holds

g1(r, x) =

+∞∑

j=0

2j−1∑

k=0

(
g1(·)−Ss,2j(·; g1)

)
(x2k+1

j+1 )2−(j+1)
∑

ν∈∆j+1
ε ∩Z\{0}

ϕ̂s

( ν

2j+1

)
r|ν|eiν(x−2π(2k+1)/2j+1).

Therefore, by setting

Φj+1,2k+1,0
s (r, x) := Φj+1,2k+1

s (r, x) − 1

2π

2π∫

0

Φj+1,2k+1
s (1, x)dx =

= 2−(j+1)
∑

ν∈∆j+1
ε ∩Z\{0}

ϕ̂s

( ν

2j+1

)
r|ν|eiν(x−2π(2k+1)/2j+1),
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we obtain

∂U

∂r
(r, x) =

g1(r, x)

r
=

+∞∑

j=0

2j−1∑

k=0

(
g1(·)− Ss,2j(·; g1)

)
(x2k+1

j+1 )
Φj+1,2k+1,0
s (r, x)

r
=

=

+∞∑

j=0

2j−1∑

k=0

(
g1(·)− Ss,2j(·; g1)

)
(x2k+1

j+1 )2−(j+1)
∑

ν∈∆j+1
ε ∩Z\{0}

ϕ̂s

( ν

2j+1

)
r|ν|−1eiν(x−2π(2k+1)/2j+1),

where the series converges uniformly in K1. Setting

Ψj,k,−1
s (r, x) :=

r∫

0

Φj+1,2k+1,0
s (r′, x)

r′
dr′ =

= 2−(j+1)
∑

ν∈∆j+1
ε ∩Z\{0}

ϕ̂s

( ν

2j+1

)r|ν|
|ν| e

iν(x−2π(2k+1)/2j+1), j ∈ N ∪ {0}, k = 0, 2j − 1,

and calculating the U(r, x) from the preceding equality, we formulate the following theorem.

Theorem 1. Under conditions of setting of the Neumann BVP (2.1) we obtain for s = 1, 2, 3

U(r, x) = U(1, 0) +

+∞∑

j=0

2j−1∑

k=0

(
g1(·)− Ss,2j(·; g1)

)
(x2k+1

j+1 )Ψj,k,−1
s (r, x), reix ∈ K1. (2.6)

Series in (2.6) converges uniformly in K1 and U(1, 0) is a constant.

P r o o f follows from preceding equations. �

Also we obtain the error for approximation of solution U(r, x) of the problem (2.1) by partial
sums of series (2.6) denoted by Ss,2J (r, x;U,Ψ

−1). Denote by EN−

ε,J
(f)C2π

the best approximation

of a function f in C2π by trigonometric polynomials of order N−
ε,J = ⌊2J−1(1− ε)⌋.

Theorem 2. Under conditions of setting of the Neumann BVP (2.1) for s = 1, 2, 3
and J ∈ Z+ := {j ∈ Z : j ≥ 0} the function Ss,2J (r, x;U,Ψ) approximates the solution U(r, x) of

problem (2.1) with accuracy guaranteed by the inequality

‖U(r, x) − Ss,2J (r, x;U,Ψ
−1)‖C(K1) ≤

π√
3

(
1 + ‖Ss,2J‖

)
EN−

ε,J
(g1)C2π

,

Estimates for norm of the operator Ss,2J (interpolation projection onto the subspace V s
j ) can be

found in Theorem from [2].

P r o o f. For convenience introduce the following notation:

cj,k(g1) =
(
g1(·) − Ss,2j(·; g1)

)
(x2k+1

j+1 ), j ∈ N ∪ {0}, k = 0, 2j − 1.

Using Euler’s formula, we can represent (2.6) in the form

U(r, x) = U(0, 0) +

+∞∑

j=0

2j−1∑

k=0

cj,k(g1)2
−j

∑

ν∈∆j+1
ε ∩N

ϕ̂s

( ν

2j+1

)rν
ν

cos
(
ν
(
x− 2π(2k + 1)

2j+1

))
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and partial sum Ss,2J (r, x;U,Ψ
−1) in the form

Ss,2J (r, x;U,Ψ
−1) = U(0, 0) +

J−1∑

j=0

2j−1∑

k=0

cj,k(g1)2
−j×

×
∑

ν∈∆j+1
ε ∩N

ϕ̂s

( ν

2j+1

)rν
ν

cos
(
ν
(
x− 2π(2k + 1)

2j+1

))
.

Note that the following representations hold

U(r, x) =
1

π

2π∫

0

+∞∑

µ=1

cos(µ(x− ξ))

µ

(
U(1, 0) +

+∞∑

j=0

2j−1∑

k=0

cj,k(g1)Φ
j+1,2k+1
s (r, ξ)

)
dξ,

Ss,2J (r, x;U,Ψ
−1) =

1

π

2π∫

0

+∞∑

µ=1

cos(µ(x− ξ))

µ

(
U(1, 0) +

J−1∑

j=0

2j−1∑

k=0

cj,k(g1)Φ
j+1,2k+1
s (r, ξ)

)
dξ.

(2.7)

It follows from

1

π

2π∫

0

+∞∑

µ=1

cos(µ(x− ξ))

µ
Φj+1,2k+1
s (r, ξ)dξ =

=
1

π

2π∫

0

N+

ε,j∑

µ=1

cos(µ(x− ξ))

µ
2−j

∑

ν∈∆j+1
ε ∩Z+

ϕ̂s

( ν

2j+1

)
rν

cos
(
ν
(
ξ − 2π(2k+1)

2j+1

))

ν
dξ =

= 2−j
∑

ν∈∆j+1
ε ∩N

ϕ̂s

( ν

2j+1

)rν
ν

cos
(
ν
(
x− 2π(2k + 1)

2j+1

))
= Ψj,k,−1

s (r, x),

where N+
ε,j = ⌈2j(1 + ε)⌉ and the second equality holds in view of

1

π

2π∫

0

cos(µ(x− ξ)) cos
(
ν
(
ξ − 2π(2k + 1)

2j+1

))
dξ =

= δµ,ν cos
(
ν
(
x− 2π(2k + 1)

2j+1

))
, ν, µ ∈ ∆j+1

ε ∩ Z
+.

Let Ss,2J (r, x; g1) be a partial sum of series in (2.4), then

|U(r, x) − Ss,2J (r, x;U,Ψ
−1)| =

∣∣∣ 1
π

2π∫

0

+∞∑

µ=1

cos(µ(x− ξ))

µ

(
g1(r, ξ)) − Ss,2J (r, ξ; g1)

)
dξ

∣∣∣ ≤

≤ 1

π

2π∫

0

∣∣∣
+∞∑

µ=1

cos(µ(x− ξ))

µ

∣∣∣ ·
∣∣∣g1(r, x)) − Ss,2J (r, x; g1)

∣∣∣dξ ≤

≤ 1

π

( 2π∫

0

1dξ
)1/2( 2π∫

0

∣∣∣
+∞∑

µ=1

cos(µ(x− ξ))

µ

∣∣∣
2
dξ

)1/2
||g1(x))− Ss,2J (r, x; g1)||C(2π) =

=
1

π

√
2π

(
π

+∞∑

µ=1

1

µ2

)1/2
||g1(x)) − Ss,2J (r, x; g1)||C(2π) ≤

π√
3

(
1 + ‖Ss,2J‖

)
ENε,J

(g1)C2π
,
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where the first equality follows from (2.7), the second equality follows from Parseval’s identity, the
second inequality follows from Hölder’s inequality and the last inequality follows from Theorem
in [2]. As the final result we have

‖U(r, x) − Ss,2J (r, x;U,Ψ
−1)‖C(K1) ≤

π√
3

(
1 + ‖Ss,2J‖

)
EN−

ε,J
(g1)C2π

.

�

3. Conclusion

Theorem 1 gives the solution (2.6) (up to an additive constant) of the problem (2.1) in form
of uniformly convergent in K1 series of harmonic interpolating 2π-periodic wavelets. In this case,
coefficients of series in (2.6) have an easy-to-calculate form in preference to calculating coefficients
(integrals) in case of implementing orthogonal 2π-periodic wavelets. This useful fact simplify the
numerical implementation of the suggested method.
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