
URAL MATHEMATICAL JOURNAL, Vol. 4, No. 2, 2018, pp. 99–110

DOI: 10.15826/umj.2018.2.011

D2-SYNCHRONIZATION IN NONDETERMINISTIC
AUTOMATA1

Hanan Shabana

Institute of Natural Sciences and Mathematics,

Ural Federal University, 51 Lenin aven., Ekaterinburg, Russia, 620000
Faculty of Electronic Engineering, Menoufia University, Egypt

hananshabana22@gmail.com

Abstract: We approach the problem of computing a D2-synchronizing word of minimum length for a given
nondeterministic automaton via its encoding as an instance of SAT and invoking a SAT solver. In addition,
we report some of the experimental results obtained when we had tested our method on randomly generated
automata and certain benchmarks.

Keywords: Nondeterministic automata, Synchronizing word, SAT solver

Introduction

A nondeterministic finite automaton (NFA) is a triple A = (Q,Σ, δ), where Q is a finite non-
empty set of states, Σ is a finite non-empty set of input symbols, and δ is a map Q× Σ → P(Q),
where P(Q) is the power set of Q. The map δ is called the transition function of A ; it describes the
action of symbols in Σ at states in Q. As usual, we represent the NFA A by the labeled digraph
with the vertex set Q, the label alphabet Σ, and the set of labeled edges

{q
s
−→ q′ | q, q′ ∈ Q, s ∈ Σ, q′ ∈ δ(q, s)}.

A word over Σ is a finite (maybe, empty) sequence of symbols from Σ. The set of all words over
Σ including the empty word is denoted by Σ∗. If w = a1 · · · aℓ with a1, . . . , aℓ ∈ Σ is a non-empty
word over Σ, the number ℓ is said to be the length of w and is denoted by |w|. The length of the
empty word is defined to be 0. The set of all words of a given length ℓ over Σ is denoted by Σℓ.

For every NFA A = 〈Q,Σ, δ〉, we extend the function δ to a function P(Q) ×Σ∗ → P(Q) (still
denoted by δ) by induction on the length of w ∈ Σ∗. If |w| = 0, that is, w is the empty word, then,
for each X ⊆ Q, we let δ(X,w) := X. If |w| > 0, we represent w as w = sw′ with w′ ∈ Σ∗ and
s ∈ Σ and, for each X ⊆ Q, let δ(X,w) :=

⋃

q∈X δ(δ(q, s), w′) (the right hand side of the latter
equality is defined by the induction assumption since |w′| < |w|). To lighten the notation, we write
q.w for δ(q, w) and X.w for δ(X,w) whenever we deal with a fixed automaton.

The present note is a follow-up of the paper [12] by Volkov and the present author. We briefly
recall the problem approached in [12] and, in parallel, introduce the problem that we tackle here.
We are interested in synchronization of finite automata. The basic idea of synchronization is as
follows: for a given automaton, we look for a sequence of input signals that allows us to predict the
behaviour of the automaton after consuming these signals, no matter at which state the automaton
was at the beginning. This input is called a synchronizing word, and if an automaton possesses
such a word, it is called synchronizing.

1Supported by the Competitiveness Enhancement Program of Ural Federal University.

https://doi.org/10.15826/umj.2018.2.011
mailto:hananshabana22@gmail.com

100 Hanan Shabana

The above informal idea of synchronization is fairly easy to formalize for deterministic automata
but for NFAs it admits several non-equivalent formalizations. We are not going to survey all
formalizations that appear in the literature and restrict ourselves to the two following versions of
synchronization, both originating in [7].

Let A = (Q,Σ, δ) be an NFA. A word w ∈ Σ∗ is said to be D3-synchronizing if
⋂

q∈Q q.w 6= ∅.
In terms of the labeled digraph representing A , this condition amounts to saying that for each
q ∈ Q, there exists a directed path, whose consecutive labels form the word w, that starts at q and
terminates at a certain common state, independent of q. Observe that this definition implies that
the action of any D3-synchronizing word must be defined at every state of A . A NFA is called
D3-synchronizing if it admits a D3-synchronizing word.

A word w ∈ Σ∗ is said to be D2-synchronizing for A = (Q,Σ, δ) if q.w = q′.w for all q, q′ ∈ Q.
To understand the ‘physical meaning’ of this concept, imagine a big quantity of identical NFAs
which get the same input sequence and work on it in parallel. If the sequence constitutes a D2-
synchronizing word, then after consuming the input, the NFAs will demonstrate identical (that is,
synchronous) behaviour, even though originally they all might have been in different states that
were unknown to us.

In contrast to the condition
⋂

q∈Q q.w 6= ∅, the equality q.w = q′.w does not imply that the
action of w must be everywhere defined. However, the equality ensures that if a D2-synchronizing
word is undefined at some state, the word must be nowhere defined. Thus, a D2-synchronizing word
is either nowhere or everywhere defined; in the latter case, it is easy to see that the word is also D3-
synchronizing. (The converse is not true: a D3-synchronizing word can fail to be D2-synchronizing.)
A NFA is called D2-synchronizing if it has a D2-synchronizing word.

We mention that both D3- and D2-synchronization get very transparent meanings within a
standard matrix representation of NFAs. In this representation, an NFA A = (Q,Σ, δ) becomes a
collection of |Σ| Boolean Q × Q-matrices where each input symbol s ∈ Σ is encoded by a matrix
M(s) whose (q, q′)-entry is 1 if q′ ∈ δ(q, s) and 0 otherwise. It is not hard to check that the
automaton A is D3-synchronizing if and only if some product of the matrices M(s), s ∈ Σ, has a
column consisting entirely of 1s, and A is D2-synchronizing if and only if in some product of the
matrices M(s), s ∈ Σ, every column consists either entirely of 0s or entirely of 1s.

The problems of determining whether or not a given NFA is either D3- or D2-synchronizing are
known to be PSPACE-complete and there is no polynomial in n upper bound on the length of D3- or
D2-synchronizing words for NFAs with n states. (These facts follow from results found by Rystsov
in the early 1980s [10, 11] and later rediscovered (and strengthened) by Martyugin [9].) Thus,
given an NFA, finding a D3- or D2-synchronizing word of minimum length for it is computationally
hard. In [12] the author and Volkov have approached the problem of finding a D3-synchronizing
word of minimum length for a given NFA via the SAT-solver method. The method of treating
computationally hard problems consists in encoding them as instances of the Boolean satisfiability
problem (SAT) that are then fed to a SAT-solver, that is, a specialized program designed to solve
instances of SAT. Modern SAT solvers are extremely powerful: they can solve instances with
hundreds of thousands of variables and millions of clauses within a few minutes. Therefore the
SAT-solver method has a very wide range of applications, see [5] for a survey. In particular, the
method has been successfully invoked for studying synchronization in deterministic automata, see
[6, 13]. Our results in [12] have demonstrated that the SAT-solver method can also be applied in
the realm of NFAs. Here we extend the approach to the case of D2-synchronization.

The paper is organized as follows. Sect. 1 describes the encoding reducing our problem to SAT.
Sect. 2 presents the main algorithm, outlines the settings of our experiments and gives samples of
our experimental results. Sect. 3 collects a few final remarks, including a discussion of the future
work in the direction of the present paper.

D2-Synchronization in Nondeterministic Automata 101

1. Encoding to SAT

We start with a precise formulation of the problem which we are going to study here.

D2W (the existence of a D2-synchronizing word of a given length):
Input: A NFA A with two input symbols and a positive integer ℓ.
Output: YES if A has a D2-synchronizing word of length ℓ; NO otherwise.

In [12] the present author and Volkov have considered the problem D3W that has exactly the
same instances as D2W but asks whether or not A has a D3-synchronizing word of length ℓ. For
both D2W and D3W, the integer ℓ is assumed to be given in unary; as explained in [12, Sect. 2],
with ℓ given in binary, it is not feasible to expect the existence of a polynomial reduction from
D3W to SAT, and the very same argument applies to D2W.

It is fair to say that our encoding of D2W has been obtained as a modification of the encoding
of D3W suggested in [12]. However, restricting here to the “new” part of the encoding only would
make the present paper difficult to follow without looking at [12] at every single step of the way.
Therefore, we have preferred to describe our encoding in a self-contained manner, even though this
causes a few overlaps with [12].

Recall that an instance of SAT is a pair (V,C), where V is a set of Boolean variables and C is
a collection of clauses over V . (A clause over V is a disjunction of literals and a literal is either a
variable in V or the negation of a variable in V .) The answer to an instance (V,C) is YES if (V,C)
has a satisfying assignment (i.e., a truth assignment on V that satisfies C) and NO otherwise. We
aim to construct a polynomial reduction of D2W to SAT. For this, we have to find two polynomials
v(x, y) and c(x, y) (preferably of low degrees in x and y) with the following property: given an
arbitrary instance (A , ℓ) of D2W, where A = (Q,Σ, δ) is an NFA with two input symbols, we are
able to produce an instance (V,C) of SAT such that the answer to (A , ℓ) is YES if and only if so
is the answer to (V,C), while |V | ≤ v(|Q|, ℓ) and |C| ≤ c(|Q|, ℓ).

Throughout our encoding, we let Σ := {0, 1} and Q := {q0, . . . , qn−1}. For a state q ∈ Q, we
use the expressions P0(q) and P1(q) to denote the sets of all preimages of q under the actions of
the input symbols 0 and 1 respectively; that is, if a is either of the two symbols, then

Pa(q) := {p ∈ Q | q ∈ p.a}.

First we define the set V of variables. We need two sorts of variables: letter variables and token
variables.

The letter variables are x1, . . . , xℓ. The variable xt, 1 ≤ t ≤ ℓ, plays the role of an indicator for
the t-th symbols at in the input word w := a1 · · · aℓ ∈ Σℓ: the value of xt is 1 if and only if at = 1.

The token variables are ytij where i, j = 0, . . . , n − 1 and t = 0, 1, 2, . . . , ℓ. To explain the role
of these variables, we use a solitaire-like game Γ on the labeled digraph representing the NFA A .
In the initial position of Γ, each state qi ∈ Q holds exactly one token denoted i. In the course of
the game, tokens migrate and may multiply or disappear according to the previous position of the
game and the action of the player. Namely, at each move an input symbol a ∈ Σ is chosen. Then
for each state q ∈ Q such that q.a 6= ∅, all tokens that were held by q slide along the edges labeled
a to all states in the set q.a. (If |q.a| > 1, then every token held by q gives rise to |q.a| identical
tokens, one for each state in q.a.) If q.a = ∅, then all tokens that were held by q disappear. Thus,
after the move, the token i occurs at a state p ∈ Q if and only if p ∈ q.a for some state q that had
held i just prior to the move. For an illustration, Fig. 1 (borrowed from [12]) demonstrates the
initial case of a 5-state NFA with the input alphabet {0, 1} (top), along with the outcomes of the
first move, depending on whether 0 or 1 has been chosen for the move (bottom left and bottom
right, respectively).

102 Hanan Shabana

Applying 0 Applying 1

0

4 1

3 2

0

0

0

1

0

1
1

1

0

0

1

0, 4

0

2, 3 1

3 1, 4

0 0

0

0

0

1

1

0

1
1

0

0

1 0

0

0

1

1

0
1

1

0

0

1

Figure 1. Redistribution of tokens after the first move

The intended meaning of the variables ytij (which will be enforced by the condition we impose
on them later) is as follows: ytij = 1 should mean that after t rounds of the game Γ, one of the
tokens held by the state qj is i.

Perhaps, it makes sense to add a matrix interpretation of the game Γ as the token variables get
quite a clear meaning under this interpretation. The initial position of Γ can be thought of as the
identity Boolean Q × Q-matrix. At each move, an input symbol a ∈ Σ is chosen and the matrix
of the current position is right multiplied by the matrix M(a). Then for each fixed t, the values
of the variables ytij are exactly the entries of the matrix corresponding to the position of Γ after t
moves. For instance, the matrices that correspond to two possible positions of the game played on
the 5-state NFA in Fig. 1 are













1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
1 0 0 0 0













and













0 0 1 1 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 0 0 0













.

Altogether, V consists of n2(ℓ+1)+ℓ variables so that we can take the polynomial x2(y+1)+y
to play the role of v(x, y) from the above definition of polynomial reduction. For the reduction
from D3W to SAT in [12], an extra set of n variables (the so-called synchronization variables) was
used. Here we have managed to slightly decrease the number of variables.

Now we describe the set C of clauses over V corresponding to the instance (A , ℓ). As in [12],
C is the disjoint union of set C0 of initial clauses, the sets Ct, t = 1, . . . , ℓ, of transition clauses,
and the set S of synchronization clauses. The clauses in C0, C1, . . . , Cℓ are constructed exactly as
in [12] (but we will recall the construction for the reader’s convenience) while the clauses in S are

D2-Synchronization in Nondeterministic Automata 103

essentially different as these are the clauses that reflect the essence of D2-synchronization.
The clauses in C0 describe the initial position of the game Γ. In this position, each state qi ∈ Q

holds the token i and nothing else. Therefore C0 consists of n2 one-literal clauses, namely, the
clauses y000, . . . , y

0
n−1n−1 along with all clauses of the form ¬y0ij with i 6= j.

In order to define Ct for t = 1, . . . , ℓ, consider for all i, j = 0, . . . , n− 1, the following formulas:

Ψt
ij : ytij ⇐⇒

(

xt ∧
∨

qk∈P1(qj)

yt−1
ik

)

∨
(

¬xt ∧
∨

qh∈P0(qj)

yt−1
ih

)

.

The equivalence Ψt
ij is nothing but a direct translation of the above propagation rule for the

tokens in the language of propositional logic. Indeed, it says that the token i occurs at the state qj
after t moves if and only if one of the following alternatives takes place:

• the t-th move was done with the input symbol 1 and one of the preimages of qj under the
actions of 1 was holding i after t− 1 moves, or

• the t-th move was done with the input symbol 0 and one of the preimages of qj under the
actions of 0 was holding i after t− 1 moves.

The following fact is a special instance of [12, Lemma 2]:

Lemma 1. Every truth assignment ϕ : {x1, . . . , xℓ} → {0, 1} on the letter variables has a
unique extension ϕ to the token variables ytij that makes all the clauses in C0 and all the for-
mulas Ψt

ij hold true (i, j = 0, . . . , n − 1, t = 1, . . . , ℓ). The token variable ytij gets value 1 under ϕ
if and only if after the moves ϕ(x1), . . . , ϕ(xt) of the game Γ, one of the tokens held by the state qj
is i.

Now, for each t = 1, . . . , ℓ, we let Ct be the set of all clauses of a suitable CNF (conjunctive
normal form) equivalent to

∧

1≤i,j≤n

Ψt
ij. Of course, there are many ways to convert the latter formula

to an equivalent CNF, but in order to reuse a part of code written for [12], we retain for Ct the
following set of clauses:

¬ytij ∨ xt ∨
∨

qh∈P0(qj)

yt−1
ih , ¬ytij ∨ ¬xt ∨

∨

qk∈P1(qj)

yt−1
ik , (1.1)

ytij ∨ ¬xt ∨ ¬yt−1
ik for each qk ∈ P1(qj), (1.2)

ytij ∨ xt ∨ ¬yt−1
ih for each qh ∈ P0(qj). (1.3)

Clauses of the form (1.1)–(1.3) simplify if one of the sets P0(qj) or P1(qj) is empty. In (1.1) the
disjunctions over the empty sets are omitted so that if, say, P0(qj) = ∅, then the first clause in (1.1)
reduces to ¬ytij ∨ xt. As for (1.2) or (1.3), these clauses disappear whenever P1(qj) or, respectively
P0(qj) are empty. Thus, if the state qj is such that P0(qj) = P1(qj) = ∅, then both (1.2) and (1.3)
vanish and the two clauses in (1.1) reduce to ¬ytij ∨ xt and ¬ytij ∨ ¬xt. The latter pair of clauses
is clearly equivalent to just ¬ytij whence all clauses (1.1)–(1.3) reduce to ¬ytij for this particular j
and for all i = 0, . . . , n − 1 and t = 1, . . . , ℓ. This fact amounts to expressing the following simple
idea: if the state qj has no incoming edges, then no token can arrive at qj after any move of the
game Γ.

Let m stand for the number of all transitions in A , that is, triples (q, a, q′) ∈ Q× Σ ×Q with
q′ ∈ δ(q, a). Clearly, m ≤ 2n2. For each fixed i, the number

∑n
j=1(|P1(qj)| + |P0(qj)|) of clauses of

the forms (1.2) and (1.3) is equal to m, whence the total number of such “short” clauses is mn. As
for “long” clauses in (1.1), there are at most two such clauses for each fixed pair (i, j), whence their
total number does not exceed 2n2. Altogether, |Ct| ≤ n(m+ 2n) ≤ 2n2(n+ 1) for each t = 1, . . . , ℓ.

104 Hanan Shabana

While clauses in
⋃ℓ

t=0 Ct coincide with those used in [12], the sets of synchronization clauses
in [12] and here are different. The present set S contains n2 disjunctions of the following form:

¬yℓij ∨ yℓi+1(mod n) j , i, j = 0, . . . , n− 1. (1.4)

Clearly, for each fixed j, the clauses (1.4) are equivalent to the cycle of implications

yℓ0j → yℓ1j , yℓ1j → yℓ2j , . . . , y
ℓ
n−1 j → yℓ0j

that expresses the idea of D2-synchronization as follows: if the state qj holds some token after ℓ
moves, then qj must hold all n tokens 0,1, . . . ,n− 1. Observe that the clauses (1.4) are satisfied
if all variables yℓij get value 0; by Lemma 1 this happens exactly when all tokens disappear after

ℓ moves which means that the word w ∈ Σℓ corresponding to the chosen sequence of moves is
nowhere defined. In this paper we are interested in finding only those D2-synchronizing words that
are somewhere defined; we refer to them as proper D2-synchronizing words. Therefore, we add to
the set S the following clause:

∨

0≤j≤n−1

yℓ0j. (1.5)

The clause (1.5) is satisfied if and only if some state holds the token 0 after ℓ moves; in the
presence of (1.4), the latter fact is equivalent to the claim that some state holds some token after
ℓ moves, which in turn means that the word w is somewhere defined.

The whole set C = S ∪
⋃ℓ

t=0 Ct consists of at most 2n2((n + 1)ℓ + 1) + 1 clauses. Thus, the
polynomial 2x2((x+1)y+1)+1 can be taken as c(x, y) from the definition of polynomial reduction.
Summarizing the above discussion, we arrive at the following result parallel to [12, Theorem 3].

Theorem 1. An NFA A has a proper D2-synchronizing word of length ℓ if and only if the
instance (V,C) of SAT constructed above is satisfiable, and the construction takes time polynomial
in the size of A and the value of ℓ. Moreover, a word w = a1 · · · aℓ with a1, . . . , aℓ ∈ {0, 1} is
proper D2-synchronizing for A if and only if the map xt 7→ at, t = 1, . . . , ℓ, extends to a satisfying
assignment for (V,C).

2. Experimental results

The general scheme of our experiments follows [12] mutatis mutandis. We outline our basic
procedure, commenting on similarities with and differences from the procedure implemented in [12].

1. A positive integer n (the number of states) is fixed. As in [12], we have considered n ≤ 100.

2. A random NFA A with n states and 2 input symbols is generated. We have used the same
two models of random generation that were used in [12] but we provide details below for the
reader’s convenience. As in [12], we disregard NFAs that have no everywhere defined input
symbol because such NFAs possess neither D3-synchronizing nor proper D2-synchronizing
words.

3. A positive integer ℓ0 (the hypothetical length of the shortest D2-synchronizing word for A)
is chosen. Taking into account the fact that proper D2-synchronization is more restrictive
than D3-synchronization, we have used slightly larger values of ℓ0 than in [12]. We introduce
three integer variables ℓmin, ℓ, and ℓmax and initialize them as follows: ℓmin := 1, ℓ := ℓ0,
ℓmax := 2ℓ0.

4. The pair (A , 1) is encoded into a SAT instance (V ′, C ′) as described in Sect. 1.

D2-Synchronization in Nondeterministic Automata 105

5. The instance (V ′, C ′) is scaled to the instance (V,C) that encodes the pair (A , ℓ), see Re-
mark 1 below.

6. The SAT solver MiniSat 2.2.0. is invoked to solve the SAT instance (V,C). We refer to [3]
for a description of the underlying ideas of MiniSat and to [4] for a discussion and the source
code of the solver.

7. The binary search on ℓ is performed. If MiniSat returns YES on the instance (V,C), we
check whether or not ℓ = ℓmin. If ℓ = ℓmin, then ℓ is the minimum length of proper D2-syn-
chronizing words for A , and we pass to Step 2 to generate another NFA. If ℓ > ℓmin, we keep
the value of ℓmin, update ℓmax and ℓ by letting

ℓmax := ℓ, ℓ :=

⌊

ℓmin + ℓmax

2

⌋

,

and pass to Step 5.

If the MiniSat returns NO on the instance (V,C), we check whether or not ℓ = ℓmax. If
ℓ = ℓmax, we interpret this as the evidence that the NFA A fails to be properly D2-synchro-
nizing2 and go to Step 2 to generate another NFA. If ℓ < ℓmax, we keep the value of ℓmax,
update ℓmin and ℓ by letting

ℓmin := ℓ + 1, ℓ :=

⌈

ℓmin + ℓmax

2

⌉

,

and pass to Step 5.

Remark 1. In the course of the binary search outlined above, we have to consider instances
of D2W with the same NFA A but different values of ℓ. An important feature of the encoding
presented in Sect. 1 is that as soon as we have constructed the “primary” SAT instance (V ′, C ′)
that encodes the D2W instance (A , 1), we are in a position to scale (V ′, C ′) to the SAT instance
encoding the D2W instance (A , ℓ) for any value of ℓ. In order to explain this feature, recall that
MiniSAT accepts its input in the following text format (so-called simplified DIMACS CNF format).
Every line beginning c is a comment. The first non-comment line is of the form:

p cnf NUMBER OF VARIABLES NUMBER OF CLAUSES

Variables are represented by integers from 1 to NUMBER OF VARIABLES. The first non-comment line
is followed by NUMBER OF CLAUSES non-comment lines each of which defines a clause. Every such
line starts with a space-separated list of different non-zero integers corresponding to the literals of
the clause: a positive integer corresponds to a literal which is a variable, and a negative integer
corresponds to a literal which is the negation of a variable; the line ends in a space and the number 0.

Given an NFA A with n states, we write the SAT instance (V ′, C ′), which corresponds to (A , 1),
in DIMACS CNF format, representing the variables y0ij, y

1
ij, and x1 by the numbers, respectively,

in + j + 1, n2 + in + j + 2, and n2 + 1. Consider, for a simple illustration, the NFA E2 shown
in Fig. 2.

Table 1 in the next page presents our encoding of the D2W instance (E2, 1) as a SAT instance.
In the left column the SAT instance is shown as a list of clauses while the right column shows it in
DIMACS CNF format.

2Of course, the equality ℓ = ℓmax only means that A has no proper D2-synchronizing word of length
≤ 2ℓ0, and it is not excluded, in principle, that the NFA is properly D2-synchronizing but its shortest proper
D2-synchronizing word is very long. However, by choosing appropriate values of the parameter ℓ0, we have
drastically minimized the number of the “bad” cases when the SAT solver returns NO and ℓ = ℓmax so that
we have been able to analyze each of them individually.

106 Hanan Shabana

q0 q1

0

1

0

0

Figure 2. The NFA E2

Clauses DIMACS CNF lines

p cnf 9 25

C ′
0















y000
¬y001
¬y010
y011

1 0

-2 0

-3 0

4 0

C ′
1















































































































¬y100 ∨ x1 ∨ y000 ∨ y001
¬y100 ∨ ¬x1

y100 ∨ x1 ∨ ¬y000
y100 ∨ x1 ∨ ¬y001
¬y101 ∨ x1 ∨ y001
¬y101 ∨ ¬x1 ∨ y000
y101 ∨ ¬x1¬y

0
00

y101 ∨ x1 ∨ ¬y001
¬y110 ∨ x1 ∨ y010 ∨ y011
¬y110 ∨ ¬x1

y110 ∨ x1 ∨ ¬y010
y110 ∨ x1 ∨ ¬y011
¬y111 ∨ x1 ∨ y011
¬y111 ∨ ¬x1 ∨ y010
y111 ∨ ¬x1¬y

0
10

y111 ∨ x1 ∨ ¬y011

-6 5 1 2 0

-6 -5 0

6 5 -1 0

6 5 -2 0

-7 5 2 0

-7 -5 1 0

7 -5 -1 0

7 5 -2 0

-8 5 3 4 0

-8 -5 0

8 5 -3 0

8 5 -4 0

-9 5 4 0

-9 -5 3 0

9 -5 -3 0

9 5 -4 0

S ′























¬y100 ∨ y101
¬y101 ∨ y100
¬y110 ∨ y111
¬y111 ∨ y110
y100 ∨ y101

-6 7 0

-7 6 0

-8 9 0

-9 8 0

6 7 0

Table 1. The SAT encoding of the D2W instance (E2, 1)

Now, in order to scale (V ′, C ′) to the SAT instance (V,C) that encodes the pair (A , ℓ) for
some given ℓ > 1, we perform the following transformations on the DIMACS CNF representation
of C ′ = C ′

0 ∪ C ′
1 ∪ S′:

1. In the first non-comment line, replace NUMBER OF VARIABLES and NUMBER OF CLAUSES by

D2-Synchronization in Nondeterministic Automata 107

n2(ℓ + 1) + ℓ and respectively ℓN + 2n2 + 1, where N is the number of clauses in C ′
1.

2. Keep the lines corresponding to the clauses in C ′
0 and C ′

1.

3. For each t = 2, . . . , ℓ, add all the lines obtained from the ones corresponding to the clauses
C ′
1 by keeping the sign of every non-zero integer and adding (t− 1)n2 + t− 1 to its absolute

value.

4. In each line corresponding to a clause in S′, substitute every nonzero integer ±k by the
integer ±(k + (ℓ− 1)n2 + ℓ− 1).

Our experiments have been performed on a personal computer equipped with an Intel(R)
Core(TM) i5-2520M processor with 2.5 GHz CPU and 4GB of RAM. We have implemented the
described algorithm in C++ and compiled with GCC 4.9.2. For various fixed n ≤ 100, up to
1000 NFAs with n states have been generated and analyzed. We have generated 1000 automata
for each n ∈ {5, 10, . . . , 30}, 700 automata for each n ∈ {35, 40, . . . , 60}, 500 automata for each
n ∈ {65, 70, . . . , 80}, and 200 automata for each n ∈ {90, 100}. The calculations have taken ≈ 400
seconds for n = 10 and ≈ 1.2 · 105 seconds for n = 80.

As in [12], the two models used for random generation of an NFA A = (Q,Σ, δ) with n states
and 2 input symbols were the uniform model based on the uniform distribution and the Poisson
model based on the Poisson distribution with some parameter λ. For each state q ∈ Q and each
symbol s ∈ Σ, we first choose a number k ∈ {0, 1, 2, . . . , n} that serves as the cardinality of the
set δ(q, s). In the uniform model, each k is chosen with probability 1/(n + 1) while in the Poisson
model with parameter λ, each k < n is chosen with probability e−λλk/k! and n is chosen with
probability 1 − e−λ

∑n−1
k=0 λ

k/k!. With k having been chosen, we proceeded the same in both
models, by choosing δ(q, s) from all

(

n
k

)

subsets of Q with cardinality k uniformly at random.

For NFAs generated under the uniform model, we have observed that for an overwhelming
majority of properly D2-synchronizing NFAs, the length of the shortest proper D2-synchronizing
word is 3, and this conclusion does not depend on the number of states within the range of our
experiments. Recall that the experiments in [12] revealed quite a similar phenomenon for D3-
synchronization: if a NFA generated under the uniform model is D3-synchronizing (which happens
with the probability ≈ 60%, see [12, Proposition 5]), then its shortest D3-synchronizing word has
length 2, and this fact does not depend on the number of states. An informal explanation of the
latter phenomenon can be found in [12]; similar arguments apply also in the present situation.

Thus, the uniform model fails to produce any “slowly synchronizing” NFA. This indicates that
using SAT-solvers in the uniform setting was not really necessary since a brute-force approach
would suffice. Indeed, given an NFA A = (Q,Σ, δ), one can write all words over Σ up to a given
length in the short-lex order and apply each of these words to A until one finds a D2-synchronizing
word. As our experiments reveal, for a majority of NFAs generated under the uniform model, the
brute-force approach requires to check only words up to length 3.

For random NFAs generated under the Poisson model, our experiments show that if the pa-
rameter λ is fixed, the length of the shortest proper D2-synchronizing word grows with the number
of states but the growth rate is rather small. Some sample experimental results are presented
in Fig. 3. The three graphs in Fig. 3 correspond to NFAs with 30, 45, and 60 states generated
under the Poisson models with λ = 2 and demonstrate how these NFAs are distributed according
to the length of their shortest proper D2-synchronizing words. The horizontal axis is the minimum
length of proper D2-synchronizing words and the vertical axis is the number of NFAs. We have
applied the method of least squares to our experimental data, searching for an explicit function
of n that approximates the mean value Eλ(n) of the minimum lengths of proper D2-synchronizing
words for n-state NFAs generated under the Poisson model with a given parameter λ. The best

108 Hanan Shabana

6 8 10 12

0

200

400

The length of the shortest synchronizing word

N
u
m
b
er

o
f
N
F
A
s

n=30
n=45
n=60

Figure 3. Distributions of random NFAs with 30, 45, and 60 states generated under the Poisson model with
λ = 2 according to the minimum lengths of their proper D2-synchronizing words

approximations have been provided by logarithmic functions; for instance, for λ = 2, we have found
the following solution:

E2(n) ≈ −0.39 + 2.2 ln(n).

0 20 40 60 80 100

0.1

0.15

0.2

0.25

Number of states

R
el
a
ti
v
e
st
a
n
d
a
rd

d
ev
ia
ti
o
n

Figure 4. The relative standard deviation of the minimum lengths of proper D2-synchronizing words for
n-state NFAs as a function of n

Fig. 4 shows the relation between the relative standard deviation of our datasets and the number
of states (for λ = 2).

Besides experimenting with randomly generated NFAs, we have tested our approach on certain
provably “slowly synchronizing” NFAs considered in the literature. Here we report a set of results
in which we used as benchmarks several automata from the series Pn suggested by de Bondt, Don,
and Zantema [2]. The state set of Pn is {1, 2, . . . , n}, n ≥ 3, and the input alphabet consists of

D2-Synchronization in Nondeterministic Automata 109

two letters a and b whose actions are defined as follows:

q.a :=

{

q + 1 if q = 1, 2,

q if q = 3, . . . , n;
q.b :=











undefined if q = 1,

q + 1 if q = 2, . . . , n− 1,

1 if q = n.

Thus, the automata Pn are partial deterministic, and it is easy to see that for partial deterministic
automata, proper D2-synchronizing words coincide with D3-synchronizing words and coincide with
so-called carefully synchronizing words considered in [2]. Hence we can compare the information
about the length of shortest synchronizing words for Pn obtained in [2, Theorem 3] and the results
produced by an application of our procedure. In our experiments, we have examined all automata
Pn with n = 4, 5, . . . , 11, and for each of them, our result has matched the theoretical value
predicted by [2, Theorem 3]. The time consumed ranges from 0.301 sec for n = 4 to 4303 sec for
n = 11. Observe that in the latter case the shortest synchronizing word has length 116; clearly,
this value is out of reach for any brute-force method.

3. Conclusion and future work

We have presented a modification of the approach originated in [12] that has allowed us to
find shortest proper D2-synchronizing words for nondeterministic automata with two input letters
and up to 100 states. The size of automata that we are able to analyze may seem modest in
comparison with the results of [8] whose authors describe sophisticated methods to compute shortest
synchronizing words for deterministic automata with up to 350 states. However, two important
nuances should be taken into account. First, for the time being, the approach of [12] and the
present paper appears to be the only one that has proved to work in the realm of nondeterministic
automata. Second, it is well known that nondeterministic automata may be exponentially more
succinct than equivalent deterministic ones, and, say, an NFA with 100 states may encode the same
amount of information as a DFA with 2100 states.

We have concentrated on D2-synchronizing words which are everywhere defined. In fact, short-
est nowhere defined words are even easier to be find with a similar method. The point is that in
terms of our game Γ from Sect. 1, a nowhere defined word is just a word which application removes
all tokens. However, if all tokens are going to be eventually removed, there is no need to distinguish
between them! Therefore one can drastically reduce the number of variables and clauses used in
the encoding. Instead of the 3-parameter set of variables {ytij} used in Sect. 1, it suffices to consider
the 2-parameter set {ytj} where ytj = 1 should mean that after t rounds of the game Γ, the state
qj holds a token; similarly, the role of the 3-parameter set of formulas {Ψt

ij} can be played by
the 2-parameter set consisting of the formulas

ytj ⇐⇒
(

xt ∧
∨

qk∈P1(qj)

yt−1
k

)

∨
(

¬xt ∧
∨

qh∈P0(qj)

yt−1
h

)

for all j = 0, . . . , n − 1 and t = 1, . . . , ℓ. Similar simplifications apply to the sets of initial and
synchronization clauses. Therefore, it made no sense to search for nowhere and everywhere defined
D2-synchronizing words simultaneously, although it was possible (for this, one just had to remove
the clause (1.5) from the set of synchronization clauses).

Yet another version of synchronization for nondeterministic automata suggested in [7] is D1-
synchronization. A word w ∈ Σ∗ is said to be D1-synchronizing for A = (Q,Σ, δ) if q.w = q′.w
and |q.w| = 1 for all q, q′ ∈ Q. Clearly, every D1-synchronizing word is everywhere defined and is
D2-synchronizing but the converse is not true: an everywhere defined D2-synchronizing word need
not be D1-synchronizing. We can use encodings similar to those in [12] and the present paper in

110 Hanan Shabana

order to find shortest D1-synchronizing words for NFAs of reasonable sizes; one only has to adjust
the set of synchronization clauses.

We think that the results presented here and in [12] demonstrate that our approach works in
principle but, of course, its present implementation is only a toy prototype for a system that could
be used for real-world applications. There are several resources, on both software and hardware
sides, which can be employed to speed up our calculations and enlarge their range. In particular,
one can try more advanced SAT-solvers, such as CryptoMiniSat [14] and lingeling [1], and run a
version of our program on a multiprocessor grid.

Acknowledgments. The author thanks the anonymous referees for their constructive com-
ments and recommendations.

REFERENCES

1. Biere A. Yet another local search solver and lingeling and friends entering the SAT Competition 2014.
In: Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions. University of Helsinki,
2014. P. 39–40. URL: http://fmv.jku.at/papers/Biere-SAT-Competition-2014.pdf

2. de Bondt M., Don H., Zantema H. Lower bounds for synchronizing word lengths in partial automata.
Preprint, 2018. URL: https://arxiv.org/abs/1801.10436

3. Eén N., Sörensson N. An extensible SAT-solver. Lect. Notes Comput. Sci., Vol. 2919: Theory and
Applications of Satisfiability Testing (SAT 2003). 2004. P. 502–518. DOI: 10.1007/978-3-540-24605-3 37

4. Eén N., Sörensson N. The MiniSat Page. URL: http://minisat.se

5. Gomes C. P., Kautz H., Sabharwal A., Selman B. Satisfiability Solvers. Ch. 2. In: Handbook of Knowledge
Representation, Elsevier, 2008. P. 89–134. DOI: 10.1016/S1574-6526(07)03002-7

6. Güniçen C., Erdem E., Yenigün H. Generating shortest synchronizing sequences using Answer Set Pro-
gramming. In: Proceedings of Answer Set Programming and Other Computing Paradigms (ASPOCP
2013). P. 117–127. URL: https://arxiv.org/abs/1312.6146.

7. Imreh B., Steinby M. Directable nondeterministic automata. Acta Cybernetica. 1999. Vol. 14, no. 1.
P. 105–115.

8. Kisielewicz A., Kowalski J., Szyku la M. Computing the shortest reset words of synchronizing automata.
J. Comb. Optim. 2015. Vol. 29, no. 1. P. 88–124. DOI: 10.1007/s10878-013-9682-0

9. Martyugin P. Synchronization of automata with one undefined or ambiguous transition. Lect. Notes
Comput. Sci., Vol. 7381: Implementation and Application of Automata (CIAA 2012). 2012. P. 278–288.
DOI: 10.1007/978-3-642-31606-7 24

10. Rystsov I. K. Polynomial complete problems in automata theory. Inf. Process. Lett. 1983. Vol. 16, no. 3.
P. 147–151. DOI: 10.1016/0020-0190(83)90067-4

11. Rystsov I. K. Asymptotic estimate of the length of a diagnostic word for a finite automaton. Cybernetics.
1980. Vol. 16, no. 1. P. 194–198. DOI: 10.1007/bf01069104

12. Shabana H., Volkov M. V. Using Sat solvers for synchronization issues in nondeterministic automata.
Siberian Electronic Math. Reports. 2018. Vol. 15. P. 1426–1442.
URL: http://semr.math.nsc.ru/v15/p1426-1442.pdf

13. Skvortsov E., Tipikin E. Experimental study of the shortest reset word of random automata. Lect. Notes
Comput. Sci., Vol. 6807: Implementation and Application of Automata (CIAA 2011), 2011. P. 290–298.
DOI: 10.1007/978-3-642-22256-6 27

14. Soos M. CryptoMiniSat 2. URL: http://www.msoos.org/cryptominisat2/

http://fmv.jku.at/papers/Biere-SAT-Competition-2014.pdf
https://arxiv.org/abs/1801.10436
https://doi.org/10.1007/978-3-540-24605-3_37
http://minisat.se
https://doi.org/10.1016/S1574-6526(07)03002-7
https://arxiv.org/abs/1312.6146
https://doi.org/10.1007/s10878-013-9682-0
https://doi.org/10.1007/978-3-642-31606-7_24
https://doi.org/10.1016/0020-0190(83)90067-4
https://doi.org/10.1007/bf01069104
http://semr.math.nsc.ru/v15/p1426-1442.pdf
https://doi.org/10.1007/978-3-642-22256-6_27
http://www.msoos.org/cryptominisat2/

	Encoding to SAT
	Experimental results
	Conclusion and future work

