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Abstract: Makhnev and Nirova have found intersection arrays of distance-regular graphs with no more
than 4096 vertices, in which A = 2 and p = 1. They proposed the program of investigation of distance-regular
graphs with A = 2 and g = 1. In this paper the automorphisms of a distance-regular graph with intersection
array {39,36,4;1,1,36} are studied.
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Introduction

We consider undirected graphs without loops and multiple edges. Our terminology and notation
are mostly standard and could be found in [1]. Given a vertex a in a graph I', we denote by I';(a)
the subgraph induced by I' on the set of all the vertices of I', that are at the distance i from a. The
subgraph [a] = T';(a) is called the neighbourhood of a vertex a. Let T'(a) = T'1(a), a* = {a} UT(a).
If graph T is fixed, then we write [a] instead of I'(a).

The incidence system with the set of points P and the set of lines L is called a-partial geometry
of order (s,t) if each line contains exactly s+ 1 points, each point lies exactly on ¢ + 1 lines, any
two points lie on no more than one line, and for any antiflag (a,l) € (P, £) there are exactly « lines
passing through a and intersecting . This geometry is denoted by pG,(s,t).

In the case a = 1, the geometry pGy(s,t) is called a generalized quadrangle and is denoted
by GQ(s,t). A point graph of this geometry is defined on the set of points P and two points are
adjacent if they lie on a line. The point graph of a geometry pG,(s,t) is strongly regular with
parameters v = (s + 1)(1 + st/a), k =s(t+ 1), \=s—1+t(a—1), p = a(t +1). A strongly
regular graph with such parameters for some natural numbers «, s,t is called a pseudo-geometric
graph for pGy(s,t).

If vertices u,w are at distance ¢ in T', then by b;(u,w) (respectively, ¢;(u,w)) we denote the
number of vertices in I';y1(u) N [w] (respectively, I';_1(u) N [w]). A graph I' of diameter d is called
distance-regular with intersection array {bg, b1, ...,b4_1;¢1,...,cq} if the values b;(u, w) and ¢;(u, w)
do not depend on the choice of vertices u,w at distance 7 in I" for each ¢ =0, ...,d. Note that, for a
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distance-regular graph, by is the degree of the graph and ¢; = 1. For a subset X of automorphisms
of a graph I', Fix(X) denotes the set of all vertices of I', fixed with respect to any automorphism
of X. Further, by péj (x,y) we denote the number of vertices in a subgraph I';(xz) NI';(y) for vertices
x,y at distance [ in T.

A graph is said to be vertex-symmetric if its automorphism group acts transitively on the set
of its vertices.

In [2], intersection arrays of distance-regular graphs with A = 2, 4 = 1 and with the number
of vertices at most 4096 were found. A.A. Makhnev and M.S. Nirova proposed an investigation
program of automorphisms of distance-regular graphs from the obtained list.

Proposition 1. [2] Let T be a distance-regular graph with A\ = 2, u = 1, which has at most 4096
vertices. Then I' has one of the following intersection arrays:

(1) {21,18;1,1}(v = 400);

(2) {6,3,3,3;1,1,1,2} (' is a generalized octagon of order (3,1), v = 160), {6,3,3;1,1,2}
(T is a generalized hexagon of order (3,1), v = 52), {12,9,9;1,1,4} (T is a generalized hexagon
of order (3,3), v = 364), {6,3,3,3,3,3;1,1,1,1,1,2} (I" is a generalized dodecagon of order (3,1),
v = 1456);

(3) {18,15,9;1,1,10}(v = 1 + 18 + 270 + 243 = 532, T's is a strongly regular graph);
(33,30,8;1,1,30}, {39,36,4;1,1,36}, {21,18,12,4;1,1,6,21}.

In this paper we study automorphisms of a hypothetical distance-regular graph I with inter-
section array {39,36,4;1,1,36}. The maximal order of a clique C in T" is not more than 4. A graph
with intersection array {39,36,4;1,1,36} has v = 1 4+ 39 + 1404 + 156 = 1600 vertices and the
spectrum 391, 7675 —1156 _ @768,

Theorem 1. Let T' be a distance-reqular graph with intersection array {39,36,4;1,1,36},
G = Aut(T"), g is an element of prime order p in G and Q = Fix(g) contains exactly s vertices
in t antipodal classes. Then w(G) C {2,3,5} and one of the following statements holds:

(1) Q is an empty graph and either p = 2, a1(g) = 10r + 26m + 12 and as(g) = 80r or p =5,
a1(g) = 65n + 100 4 10 and as3(g) = 2001;

(2) Q is an n-clique and one of the following statements holds:

Yyn=1,p=3, a1(g) = 151 4+ 24 4+ 39m and as(g) = 1201 + 36,
i)n=2,p=2, ai(g) =10l 4+ 26m and az(g) = 80l — 8,

(i5) n=4, p=2, o(g) =100+26m+14 and «a3(9)=80—-16 or p=3,
ai(g) = 100 +39m + 1, 1 is congruent to —1 modulo 3 and as(g) = 1201 + 24;

(3) Q consists of n wvertices pairwise at distance 3 in I', p = 3, n € {4,7,...,40},
as(g) = 1201 + 40 — 4n and a1(g) = 150 + 30 + 39m — 6n;

(4) Q contains an edge and is a union of isolated cliques, any two vertices of different cliques
are at distance 3 in I', and either p = 3 and the orders of these cliques are 1 or 4, or p = 2 and
the orders of these cliques are 2 or 4;

(5) Q contains vertices that are at distance 2 in I" and p < 3.

(1
(4

If T is a distance-regular graph with the intersection array {39,36,4;1,1,36} then I's is a
pseudo-geometric for pG3(39, 3).

Theorem 2. Let T be a strongly regular graph with parameters (1600, 156,44,12), G = Aut(I"),
g is an element of prime order p in G and A = Fix(g). Then p < 43 and the following statements
hold:

(1) if A is an empty graph, then p =2 and a1(g) = 80s or p =5 and a;1(g) = 200t;

(2) if A is an n-clique, then one of the following statements holds:
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(i) n=1,p=2 and a1(g) = 80s — 4, or p = 3 and a1(g) = 120t + 36, or p = 13 and
a1(g) = 5200 + 156,
(17) n € {4,7,10,...,40}, p =3 and a1(g) = 120t + 40 — 4n,
(15i) n =9, p =37 and a;1(g) = 444,
(3) if A is an m-coclique, where m > 1, then either p = 2, m € {4,6,8,...,40} and
a1(g) =80s —4m orp =3, m € {4,7,10,...,40} and ai(g) = 120t + 40 — 4m;
(4) if A contains an edge and is an union of isolated cliques, then p = 3;
(5) if A contains a geodesic 2-path, then p < 43.

Corollary 1. Let T' be a distance-reqular graph with intersection array {39,36,4;1,1,36} and
nonsolvable group G = Aut(T) acts transitively on the set of vertices of T'. If a is a verter of T, T is
the socle of the group G = G/Osx (G), then T = L x M, and each of subgroups L, M is isomorphic
to one of the following groups: Zs, As, Ag or PSp(4,3).

If |T : T,| = 40%, then O (G) = 1 and this case is realized if one of the following statements
holds:

(1) L= M = PSp(4,3), |L : La| = |M : M,| = 40,

(2) L= PSp(4,3), |L: Ly| =40, M = Ag and |M,| =9,

(3) L= M = Ag and |Ly| = |My| = 9.

1. Proof of Theorem 2

First we give auxiliary results.

Lemma 1. [2, Theorem 3.2] Let I be a strongly regular graph with parameters (v,k,\, u) and
with the second eigenvalue r. If g is an automorphism of I' and A = Fix(g), then

|A| < wv-max{\, u}/(k—r).

By Lemma 1, for a strongly regular graph with parameters (1600, 156,44,12) we have
|A| < 1600 - max{44,12}/(156 — 36), |A| < 586.

Lemma 2. Let I" be a distance regular graph with intersection array {39,36,4;1,1,36}. Then
for intersection numbers of I' the following statements hold:

(1) phy = 2, ply = 36, ply = 1224, pl, = 144, pi, = 12;

(2) piy = 1, pTy = 34, pis = 4, piy = 1229, piy = 140, p3; = 12;

(3) piy = 36, piy = 3, p3, = 1260, pis = 108, pi; = 44.

P roof This follows from [I, Lemma 4.1.7]. O

The proofs of Theorems 1 and 2 are based on Higman’s method of working with automorphisms
of a distance-regular graph, presented in the third chapter of Cameron’s book [4].

Let I' be a distance-regular graph of diameter d with v vertices. Then we have a symmetric
association scheme (X, R) with d classes, where X is the set of vertices of I and R; = {(u,w) € X?|
d(u,w) =1i}. For a vertex u € X we set k; = |I';(u)|. Let A; be an adjacency matrix of graph I';.
Then A;A; =3 péjAl for some integer numbers pé ; =0, which are called the intersection numbers.
Note that péj = |I'i(u) NT'j(w)| for any vertices u, w with d(u,w) = .

Let P; be a matrix in which in the (j,)-th entry is plij. Then eigenvalues k = p1(0), ..., p1(d) of
the matrix P; are eigenvalues of I' with multiplicities mg = 1, ..., mg, respectively. The matrices P
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and @ with P;; = p;(i) and Qj; = m;p;(j)/k; are called the first and the second eigenmatrices of
I", respectively, and PQ = QP = vl, where [ is an identity matrix of order d + 1.

The permutation representation of the group G = Aut(I") on the vertex set of I' naturally gives
the monomial matrix representation ¢ of a group G in GL(v,C). The space C" is an orthogonal
direct sum of the eigenspaces Wy, Wy, ..., Wy of the adjacent matrix A = Ay of I'. For every g € G,
we have ¥(g)A = Ay(g), so each subspace W; is ¢(G)-invariant. Let y; be the character of a
representation y,. Then for ¢ € G we obtain y;(g) = v™! Z?:o Qijaj(g), where a;(g) is the
number of vertices z of X such that d(x,z9) = j.

Lemma 3. Let T' be a strongly regular graph with parameters (1600,156,44,12) and with
the spectrum 156,366 —443 ¢ = Auwt(T). If ¢ € G, x1 is the character of Vw,,
where dim(Wy) =156, then «;(9) = «i(g)) for any natural number 1, coprime to |g|,
x1(9) = (4ao(g) + a1(g))/40 — 4. Moreover, if |g| = p is a prime, then x1(g) — 156 is divisi-
ble by p.

Proof. Wehave

11 1
Q=| 156 36 -4
1443 —37 3

So, x1(g9) = (39a0(g) + 9a1(g) — a2(g))/400. Note that as(g) = 1600 — ap(g) — a1(g), so x1(g) =
(4ap(g) + a@1(g))/40 — 4. The remaining statements of the lemma follow from Lemma 2 [5]. O

Lemma 4. Let T' be a distance-reqular graph with intersection array {39,36,4;1,1,36},
G=Auw(l'). If g € G, x1 is the character of Vw,, where dim(W;) = 675, xo is the charac-
ter of Yw,, where dim(Ws) = 156, then o;(g) = a;(g') for any natural number | coprime to |g|,

x1(g9) = (44ap(g) + 8a1(g) — as(g))/104 — 25/13 and x2(g) = (4ao(g) + as(g))/40 — 4. Moreover,
if lg| = p is a prime, then x1(g) — 675 and x2(g) — 156 are divisible by p.

Proof. Wehave

1 1 1 1
o— | 67 1575/13 —25/13 —225/13
—| 156 -4 —4 36

768 —1536/13 64/13 —256/13

This means x1(g) = (351ap(g) + 631 (g9) — a2(g) — 9a3(g))/832. Note that as(g) = 1600 — ap(g) —
ai(g) — az(g), so x1(g) = (44ao(g) + 8ai(g) — az(g))/104 — 25/13.
Similarly, x2(g) = (39a0(g) — a1(g) — aa(g) + 9as3(g))/400. Note that aq(g) + az(g) = 1600 —

ao(g) — as(9), so x2(9) = (4ao(g) + a3(9))/40 — 4.
The remaining statements of this lemma follow from Lemma 2 of [5]. .

In Lemmas 5-7 we suppose that I" is a strongly regular graph with parameters (1600, 156,44, 12),
G = Aut(I'), g is an element of prime order p from G, a;(g) = pw; for i > 0 and A = Fix(g).
By Delsarts’s boundary the maximal order of a clique K in I' is not greater than 1 — k/64, so
|K| < 40. Due to Hoffman’s boundary the maximum order of a coclique C in I is not greater than
—vly/(k —64), so |C| < 40.

Lemma 5. The following statements hold:
(1) if A is an empty graph, then either p =2 and a1(g) = 80s or p =5 and a;1(g) = 200t;
(2) if A is an n-clique, then one of the following statements holds:
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(i) n=1,p=2 and a1(g) = 80s — 4, or p = 3 and a1(g) = 120t + 36, or p = 13 and
a1(g) = 5200 + 156,
(17) n € {4,7,10,...,40}, p =3 and a1(g) = 120t + 40 — 4n,
(15i) n =9, p =37 and a;1(g) = 444;
(3) if A is an m-coclique, where m > 1, then p =2, m € {4,6,8,...,40} and a1(g) = 80s — 4m
orp=3, me {4,7,10,...,40} and a1(g) = 120t 4+ 40 — 4m;
(4) if A contains an edge and is an union of isolated cliques, then p = 3.

Proof. Let A bean empty graph. As v = 26 .25, then p is equal to 2 or 5.

In the case p = 2 we have x1(g9) = a1(g)/40 — 4 and «a;(g) = 80s.

In the case p =5 we have x1(9) = a1(g)/40 — 4 and «;(g) = 200¢.

Let A be an n-clique. If n = 1, then p divides 156 and 1443, therefore p € {2,3,13}. In the
case p = 2 we have x1(9) = (4 + a1(g))/40 — 4 and «;(g) = 80s — 4.

In the case p = 3 we have x1(g) = (4+a1(g))/40 — 4 and the number (4 + 3w;)/40 is congruent
to 1 modulo 3. Hence, 4 + 3w; = 120¢ + 40 and aq(g) = 120t + 36.

In the case p = 13 we have x1(g) = (4+13w;)/40—4 and the number (4+ 13w;)/40 is congruent
to 4 modulo 13. Hence, 4 + 13wy = 5200 + 160 and a4 (g) = 5201 + 156.

If n > 1, then for any two vertices a, b € A the element g acts without fixed points on [a]N[b]—A,
on [a] — b+ and on T' — (at U bL). Hence, p divides 46 — n, 111 and 1332, therefore p € {3,37}.

In the case p = 3 we have n € {4,7,10,...,40}. Further, x1(9) = (4n + a1(g))/40 — 4 and
the number (4n + a1(g))/40 is congruent to 1 modulo 3. Hence, 4n + 3w; = 120t + 40 and
ai(g) = 120t + 40 — 4n.

In the case p = 37 we have n = 9. Further, x1(9) = (36 + a1(g))/40 — 4 and the number
(36 + a1 (g))/40 is congruent to 12 modulo 37. Hence, «a;(g) = 444.

Let A be an m-coclique, where m > 1. Then for any two vertices a,b € A the element ¢ acts
without fixed points on [a] N [b], on [a] — b+ and on T’ — (a* U bt U A). Hence, p divides 12, 144
and 1300 — m, therefore p € {2,3}.

In the case p = 2 we have m € {4,6,8,...,40}. Further, x1(9) = (4m + a1(g))/40 — 4 and the
number (4m + a1(g))/40 is even. Hence, a;(g) = 80s — 4m.

In the case p = 3 we have m € {4,7,10,...,40}. Further, x1(g) = (4m + a1(g))/40 — 4 and the
number (4m + a1(g))/40 is congruent to 1 modulo 3. Hence, a;(g) = 120t + 40 — 4m.

Let A contains an edge and is a union of isolated cliques. Then p divides 12 and 111, there-
fore p = 3. U

Lemma 6. If [a] C A for some vertex a, then for any vertex u € T's(a) — A the orbit of ul9 s
a clique or a coclique, and one of the following statements holds:
(1) if on T'— A there are no coclique orbits, then ay(g) = 1600 — ap(g), co(g) = 40l and either

(2) if on T — A there is a coclique orbit, then p < 3, and if a* = A, then p = 3 and ay(g) =
1200 + 12.
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Proof. Let[a] C A for some vertex a. Then for any vertex u € I's(a) — A the orbit 9
doesn’t contain a geodesic 2-pathes and is a clique or a coclique.

In the case p > 13 a subgraph [a] N [u] is a 12-clique and for two vertices b,c € [a] N [u] a
subgraph [b] N [¢] contains a, 10 vertices from [a] N [u] and p vertices from u!9), so 11 + p < 44,
therefore p < 31.

If on ' — A there are no coclique orbits, then a;(g) = v — |A| and for a vertex v’ € u'9 — {u}
a subgraph [u] N [u/] contains p — 2 vertices from u{9 and 12 vertices from A. Further, x1(g) =
(B (g) + 1600)/40 — 4, x1(g) — 156 is divisible by p and p divides 3ag(g)/40 — 120. We denote
ap(g) = 40l. Then 4 < < 14, p divides 40(40 — [) and 3(40 — [). Thus, either | =4, p = 2,3, or
l=5,p=5bTo0orl=6,p=217,0orl=7,p=3,11,or Il =8, p=2,0orl =9, p=31, orl =10,
p=235o0orl=11,p=29, 0orl =12, p=2,7,0orl =13, p=3,0or l = 14, p = 2,13. In the case
p > 13 a subgraph [a] N [u] is a 12-clique and p < 23.

Let p=17 and b € A —a*. Then |A(b) —a*| < 82 and |[b] — A| > 68. For w € [b] — A we have
[a] N [w] = [a] N [b] (otherwise w!9) is contained in [b] N [¢] for ¢ € [a] N [w] — [b]). A contradiction
with a fact that for two vertices ¢, d € [a] N [w] a subgraph [¢] N [d] contains 68 vertices from [b] — A.

Let p = 13. Then |A —at| =403. If b € A —a* and |[b] — A| = 13, then for any w € [b] — A we
have [a]N[w] = [a]N[b] (otherwise w9 is contained in [b]N[¢] for a vertex ¢ € [a]N[w]—[b]). Further,
[b] N [w] contains 12 vertices from w!9 and 32 vertices from A(b). Hence, for w' € w'9 — {w} a
subgraph [w] N [w'] contains b, 32-clique from A(b) and 11 vertices from w'9. A contradiction with
a fact that the order of a clique in I' is not greater than 40.

Ifb € A—at and |[b]—A| = 26, then [b]—A = w9 Uw'9. As above, [a]N[u] = [a]N[w] = [a]N]b],
therefore a subgraph {b} U ([a] N [b]) Uul?) Uwl9) is a 39-clique. If e € [u] N A(b) — [w], then [e] N [w]
contains 13 vertices from u{9), a contradiction. So, {b}U ([u] N A(b)) Uu'? Uw'9) is a 46-coclique, a
contradiction. If b € A —a* and |[b] — A| > 39, then for any two vertices ¢, d € [a] N [b] a subgraph
[c] N [d] contains a,b and 39 vertices from [b] — A, a contradiction. Statement (1) is proved.

Let on T'— A there is a coclique orbit u{9). Then [u%]N[u%] does not intersect ' — A for distinct
vertices u9t, u9, so 145p < |I' — A| < 1443, therefore p < 7.

Let us show that p < 3.

Let ¢ € [a] N [u] and [c] N [u] contains exactly 7 vertices from [a] N [u]. Then [¢] N [u] contains
44 —~ vertices outside of A (lying in distinct (g)-orbits) and p(44 —~) < |[¢c] —A| < 156 —45 = 111.
Hence, 32p < 111.

If at = A, then ag(g) = 157, p divides 1443 and p = 3. Further, x1(g) = (628 + a1(g))/40 — 4,
(628 + a1(g))/40 is congruent to 1 modulo 3 and a;(g) = 1201 + 12. O

Lemma 7. The following statements hold:
(1) T does not contain proper strongly regular subgraphs with parameters (v', k', 44,12);
(2) p<43.

Proof. Assume that I" contains proper strongly regular subgraph Y with parameters
(v, k', 44,12). Then 4(k' —12)+322 = n?, therefore n = 21, k' = [2—244, [ > 16, ¥ has nonprincipal
eigenvalues 16 + 1, 16 — [ and multiplicity of 16 + 1 is equal to (I — 17)(1? — 244)(I? +1 — 260)/24l. If
I is odd, then 8 divides (I — 17)(I? +1 — 20), [ divides 17-61-65 and I € {5,13}. If [ is even, then 3
divides (I —2)(1> = 1)(I* + 1 —2) and [ = 16. In all cases we have contradictions.

If p > 47, then A is a strongly regular graph with parameters (v/,k',44,12), so A =T, a
contradiction. O

Theorem 2 follows from Lemmas 5-7.
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2. Proof of Theorem 1

In Lemmas 8-9 it is assumed that I' is a distance-regular graph with intersection array
{39,36,4;1,1,36}, G = Aut(T"), g is an element of prime order p from G, o;(g) = pw; for i > 0 and
Q = Fix(g).

Lemma 8. The following statements hold:

(1) if Q is an empty graph, then either p = 2, ay(g) = 10r + 26m + 12 and as(g) = 80r =
1600 — a1 (g) or p =5, a1(g) = 65n + 100 + 10 and as(g) = 2001;

(2) if Q is an n-clique, then one of the following statements holds:

(i) n=1,p=3, a1(g) = 15l + 24 4+ 39m and as(g) = 1201 + 36,

(i1) n =2, p=2, ay(g) = 10l + 26m and a3(g) = 80l — 8,

(t5i) orn = 4, p = 2, a1(g) = 10l + 26m + 14 and as(g) = 80l — 16 or p = 3,
ai(g) = 100 +39m + 1, 1 is congruent to —1 modulo 3 and as(g) = 1201 + 24;

(3) if Q consists of n wvertices at distance 3 in T', then p = 3, n € {4,7,10,...,40},
as(g) = 1200 + 40 — 4n and a1(g) = 150 + 30 + 39m — 6n;

(4) if Q contains an edge and doesn’t contain vertices at distance 2 in I', then  is an union of
isolated cliques and any two vertices from different cliques are at distance 3 in I, either p = 3 and
the orders of these cliques are equal to 1 or 4, or p =2 and the orders of these cliques are equal to
2 or 4.

Proof. Let{ bean empty graph and «;(g) = pw; for i > 1. As v = 1600, then p is equal to
2 or 5.

Let p = 2. Then wy + we + w3 = 800 and x2(g) = ws/20 — 4. Hence, wz = 40r. Further,
the number yi(g) = (2wy — 10r — 25)/13 is odd, therefore w; = 13m + 6 + 5r. Finally, as(g) =0
(if d(u,u9) = 2, then the only vertex from [u] N [u9] belongs to €2, a contradiction). Therefore
ai(g) = 10r 4+ 26m + 12 = 1600 — 80r.

Let p = 5. Then w; + wy + w3 = 320 and x2(g) = w3/8 — 4. Hence, ws = 40l. Finally,
x1(g) = (bwy — 250 — 25)/13, therefore wy = 13n + 5l + 5. Statement (1) is proved.

Let Q be an n-clique. If n = 1, then p divides 39 and 315, therefore p = 3. We have x1(g) =
(8a1(g) — as(g) — 156)/104, x2(9) = (4 + as(g))/40 — 4. Therefore the number (4 + as(g))/40
is congruent to 1 modulo 3, as(g) = 1201 + 36 and the number x1(g9) = (a1(g) — 151 — 24)/13 is
divisible by 3. Hence, a1(g) = 150 + 24 + 39m.

If n > 1, then p divides 4 — n and 36, therefore either n = 2, p = 2, or n = 4, p = 2,3.
In the first case the number x2(g9) = (8 + a3(g))/40 — 4 is even and a3(g) = 80l — 8. Further,
the number xi(g9) = (a1(g) — 10)/13 — 1 is odd and a;(g) = 10l + 26m. In the second case
x2(9) = (16 + a3(g))/40 — 4 and either p = 2, a3(g) = 80l — 16, or p = 3 and a3(g) = 1200 + 24.
Further, x1(g) = (176 + 81 (g9) — a3(g))/104 — 25/13 and either p = 2, a1(g) = 10l + 26m + 14, or
p =3 and a;(g) = 10l + 39m + 1, [ is congruent to —1 modulo 3.

Let © consists of n vertices at distance 3. As pi’g =3, p§3 = 44, then p divides 3 and 46 — n.
Hence, p = 3 and n € {4,7,10,...,40}. We have x2(g) = (4n + a3(g))/40 — 4 and the number
(4n+ a3(g))/40 is congruent to 1 modulo 3, therefore a3(g) = 120l + 40 — 4n. Further, the number
x1(g9) = (6n + a1(g) — 151 — 30)/13 is divisible by 3 and a;(g) = 150 + 30 + 39m — 6n.

Let 2 contains an edge and does not contain vertices at distance 2 in I'. Then € is an union
of isolated cliques, any two vertices from distinct cliques are at distance 3 in I'. As orders of these
cliques are at most 4, then p < 3. If p = 3, then the orders of these cliques are equal to 1 or 4. If
p = 2, then the orders of these cliques are equal to 2 or 4. ]
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Lemma 9. If Q contains vertices a,b at distance 2 in I, then p < 3.

P roof. Let  contains vertices a, b at distance 2 in I' and €2 is a connected component of €2
containing a, b.

Assume that the diameter of graph € is equal to 2. Then by [1, 1.17.1] one of the following
statements holds:

(i) Qo C at and Qp(a) is an union of isolated cliques;

(73) Qo ia a strongly regular graph;

(7i1) Q is a biregular graph with degrees of vertices «, 3, where o < 3, and if A and B are sets
of vertices from 2y with degrees a and S, then A is a coclique, the lines between A and B have
order 2, the lines from B have order | = 5 — a4+ 2 > 2, and |Qy| = af + 1.

Last case is impossible because co =1 in I

In the case (i) we have p € {2,3} because of pi; = 12.

In the case (i) either p = 2 and € is the pentagon, Petersen graph or Hoffman-Singletone
graph, or p > 2 and g is a strongly regular graph with parameters (v/, &, 2, 1).

Let p > 2. Then Q(a) consists of e isolated triangles and either e =1, p =3, 0ore =2, p = 3,11,
ore=3,p=3,5,ore=4p=3,ore=5,p=3,ore=6,p=3,7,ore=7,p=3,0re=3§,
p=3,5,ore>9, p=3.

In case p = 11 graph € is a regular graph of degree 6, |2 NT'y(a)| = 18, |2 NT3(a)| = 24 and
IT's(a) — Q2] is not divisible by 11.

In case p = 7 graph  is a regular graph of degree 18, |QNI'y(a)| = 270, [2NI3(a)| = 270-4/15 =
64 and |I'3(a) — Q| is not divisible by 7.

In case p = 5 graph ) contains vertices of degrees 9 and 24. Assume that |Q(a)| = 24, Q(a)
contains (3 vertices of degree 24 in Q and Q3(a) contains v vertices of degree 24 in Q. Then the
number 215 +6(24 — 8) = |2NT2(a)| is congruent to 4 modulo 5 and 4|QNT2(a)| = 21y + 6(|2 N
I's(a)] — ). Hence, [T's(a) N Q| = (144 + 155) and 576 + 605 = 15y + 6|2 N '3(a)|, a contradiction
with the fact that |2 NT'3(a)| is divisible by 5.

So, Q is an amply regular graph with parameters (v/,9,2,1), 54 = |QNTy(a)| and |2NT3(a)| =
36. Again we have a contradiction with the fact that |2 N T's(a)| is divisible by 5.

The lemma, is proved. O

Theorem 1 follows from Lemmas 8-9.

3. Proof of Corollary 1

Until the end of the paper we will assume that I' is a distance-regular graph with intersection
array {39,36,4;1,1,36} and the nonsolvable group G = Aut(I') acts transitively on the set of
vertices of this graph. For the vertex a € I' we get |G : G| = 1600. In view of Theorem 1 we have
p € {2,3,5}. Let T be the socle of the group G = G/Ox(G).

Lemma 10. If f is an element of order 5 of G, g is an element of order p <5 of Cq(f) and
Q = Fix(g), then one of the following statements holds:

(1) Q is an empty graph, p = 2, as(g) = 80r, r < 19, ay(g) = 10r + 26m + 12 = 1600 — 80r,
and m € {-7,-2,3,8,...,58};

(2) Q consists of n vertices at distance 3 in T', p =3, n € {10,25,40}, as(g) = 1201 + 40 — 4n,
a1(g) + as(g) = 135l — 10n + 39m + 70 < 1600 and m is divisible by 5;

(3) p=3, as(g) = 120s, ap(g) = 30t + 10, a1 (g) = 391 — 165t + 155 — 30 or as(g) = 120s + 60,
ap(g) =30t — 5, ai(g) = 1951 — 165t + 155 + 60;

(4) p = 2, as(g) = 80s — 4ap(g) and ai(g) = 10s + 261 + 38 — 6c(g), 1 is congruent to 2
modulo 5.
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P r oo f. Inview of Theorem 1 Fix(f) is empty graph, a;(f) = 65n+10/+10 and as(f) = 2001.

If Q is an empty graph, then p = 2, ag(g) = 80r and a;(g) = 10r 4+ 26m + 12 = 1600 — 80r is
divisible by 5. Hence, 13m + 6 is divisible by 5 and m € {-7,—2,3,8,...,58}. Finally, 26m + 12 =
1600 — 90r, therefore m is congruent to 2 modulo 3 and m € {—7,8,23,38,53}.

If Q is an n-clique, then n is divisible by 5, we have got a contradiction.

If Q consists of n vertices at distance 3 in I', then p = 3, n € {10,25,40}, the numbers
a3(g) = 1200 4+ 40 — 4n and aq(g) = 150 4+ 30 + 39m — 6n are divisible by 5. Hence, m is divisible
by 5, a1(g) + as(g) = 1350 — 10n + 39m + 70 < 1600.

If p = 3, then x2(g9) = (4ap(g) +a3(g))/40—4 and the number (4ap(g) +as(g))/40 is congruent
to 1 modulo 3. Further, the number x1(g) = (44ap(g) + 8a1(g) — as(g))/104 — 25/13 is divisible
by 3, as(g) is divisible by 60. If a3(g) = 120s, then ag(g) = 30t + 10, ay(g) = 391 — 165t + 155 — 30.
If as(g) = 120s + 60, then ag(g) = 30t — 5, a1 (g) = 1951 — 165¢ + 15s + 60.

If p = 2, then x2(9) = (4dao(g) + as(g))/40 — 4, 4ap(g) + as(g) = 80s. Further, a;(g) =
—6ap(g) + 10s + 261 + 38 and 131 + 19 is divisible by 5, therefore | € {2,7,...}. Finally, 1600 —
5ao(g) + 80s = —6ag(g) + 10s + 261 + 38, 1600 = —70s — ag(g) + 261 + 38. 0

Lemma 11. The following statements hold:
(1) T = L x M, and each of subgroups L, M is isomorphic to one of the following groups
Z5,A5,A6 or PSp(4,3),
(2) in case |T : T,| = 402 we have Os (G) = 1 and this case is realized if one of the following
statements holds:
(1) L= M = PSp(4,3), or
(1) L= PSp(4,3), |L: L] =40, M = Ag and |M,| =9, or
(i7i) L =2 M = Ag and |Lg| = |M,| = 9.

P r oo f. Recall that a nonabelian simple {2, 3, 5}-group is isomorphic to As, Ag or PSp(4,3)
(see, [6, Table 1]). Hence, in view of Theorem 1 we have T = L x M, each of subgroups L, M is
isomorphic to one of the following groups As, Ag or PSp(4,3).

If T = PSp(4,3), then the group T, has an index 40 in T and is isomorphic to Fy.SL2(3) or
Eo7.54. B B

If T = Ag, then the group T, has an index in T, divisible by 10, and dividing 40.

If T = As, then the group T, has an index in 7', divisible by 10, and dividing 20.

In case |T : T,| = 40? we have Oz (G) = 1 and this case is realized if one of the following
statements holds: either L = M = PSp(4,3), or L = PSp(4,3), M = As |M,| =9, or
LM = Ag and |Lo| = | M| = 9. O

Corollary is proved.

4. Conclusion

We found possible automorphisms of a distance-regular graph with intersection array
{39,36,4;1,1,36}. In particular this graph is not arc-transitive.
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