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Introduction

Denote by I,, p > 1, the class of numeric sequences b = {b,},,., satisfying the condition

ol = (3 )" < o,

nez

where Z is the set of integers.
Let b = {bn},cz € l1. The sequence H(b) = {(Hb)n},c is called the Hilbert transform of the

sequence b = {b,} where

nez

b,
(Hb), = > ——, nez
m#n

M. Riesz proved (see [10] and [4, 7]) that, if b € [,, p > 1, then H(b) € [, and the inequality
1 )], < Cp 1By, (0.1)

holds. Weighted analogues of (0.1) were investigated in [1-3, 5, 6, 8, 9, 11].
If b € I3, then the sequence H(b) belongs to the class ﬂp>1 l, but doesn’t belong to the class /.
In this case, R. Hunt, B. Muckenhoupt, and R. Wheeden proved (see [6]) that the distribution
function
(Hb) (\) = > 1

{nEZ: ’(Hb)n’>>\}
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of the Hilbert transform of the sequence b satisfies the condition
Co
VA0 |(HY) (M < == blly, (0.2)

where C is an absolute constant.

In this paper, we study the asymptotic behavior of the distribution function (Hb) () of the
Hilbert transform of a sequence b € I} as A — 0 and find a necessary condition and a sufficient
condition for the summability of the discrete Hilbert transform of a sequence from the class [;.

1. Asymptotic behavior of the distribution function
of the discrete Hilbert transform

Theorem 1. Let b € ly. Then the following equation holds:

lim A-
A0+

nez

We first prove an auxiliary lemma.

Lemma 1. Letb€ly and ) = 0. Then the following equation holds:

nEZ

(Hb)(A) =0 (1/A), A—0+. (1.2)

P roof. Assume first that the sequence b € [; is concentrated on some finite interval [—m, m|,
i. e., b, =0 for |n| > m. In this case, from the equality

b k—1/2
(Ho), = > ~= - n—l/QZbk Z(n—k)(n/—1/2)b’“ Inf > m

|k|<m |k|I<m |k|<m

we get that

| QZ _1/2

|k|<m

for large values of n, whence the asymptotic equation (1.2) follows.

Let us now consider the general case. From the condition ) ., b, = 0, it follows that, for
all € > 0 there exist sequences V' = {b),},c, € 1 and V" = {b)},., € l1 satisfying the condi-
tion b =b' +b”, where the sequence V' € [; is concentrated on some finite interval [—m, m] and
Y onez b, = 0, and the sequence b” € [ satisfies the inequality > ., |b| < €/(4Cp), with the

constant Cp from (0.2). Since the sequence b’ € [; is concentrated on [-m, m] and ) . b, =0,

equation (1.2) is satisfied for the sequence b’ € I, and, therefore, there exists A (¢) > 0 such that
the inequality
A (HY) (A/2) <e/2 (1.3)
holds for 0 < A < A (e), where (HV') (\) = z{nez: |(b), |52} 1. On the other hand, inequality (0.2)
implies that
A(HY') (A/2) <2C0 Y || < &/2 (1.4)
nezZ
for all A > 0, where (Hb') () = Z{nEZ: |(Eb7),, |52} 1. From inequalities (1.3) and (1.4) and the

inclusion

{nez: |(Hb),|>Ac{nez: [(HY),|>N2}J{neZ: |(HV),|>N/2}
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we obtain that

A~ (HD) (A) < A (HV) (\/2) + A (HY') (\/2) < &

for 0 < A < A(g). This shows that equality (1.2) holds for all b € Iy satisfying the condition

> nez bn = 0. This completes the proof of Lemma 1. O

Proof of Theorem 1. In the case ) ., b, = 0, the statement of the theorem follows from
Lemma 1. Consider the case ) _, b, = a # 0. We use the following notation: ¥/, = b, for n # 0,
by = bop — , b, = 0 for n # 0, and by = o. Then b = V' + ", where ' = {8}, ., € l1 and
V' ={b},cr €. Since >, ., b, =0, we obtain from Lemma 1 that

(HY)Y(N) =0(1/X), A—=0+. (1.5)
Since (HV't),, = a/n for n # 0 and (Hb")y = 0, we have

2]a

(HV")(X) o A0+ (1.6)
For all 0 < ¢ < 1, by the inclusions
{nez: |(HY) |>A+e)A}\{neZ: |[(HV) |>er}C
c{neZ: |(HD),|> A} C
c{nez: |(HY),|>er}J{nez: |(HY), |>(1—c)A}

and relations (1.5) and (1.6), we have

2 2
o] <liminf A - (Hb) (A) < limsup A - (Hb) () < ﬂ.
14¢ A—0+ A—0+ 1—¢
This implies equation (1.1) and completes the proof of Theorem 1. O

2. A necessary condition and a sufficient condition
for the summability of the discrete Hilbert transform

Theorem 2. Let b€ ly. If Hb € 11, then it is necessary that the following equation holds:

> by =0. (2.1)

nez

Proof We first we prove that, if h = {hy,},c, € [i, then the distribution function
h(X) = > (nez: o>y 1 of the sequence h satisfies the condition

h(A) =o0(1/)), A—0+. (2.2)

Note that the condition h = {hy}, ., € [1 implies that the set of {n € Z: |h,| > A} is finite
for all A > 0. Then, the inequality

Shi= Y Y] > ] ] >

nezZ {n€Z:|hn|>1} k=0 {neZ: |hn|6(2*k*1;2*k]}
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> Z 1 +i [ Z 2—%1] _
{n€Z:hn|>1} k=0 {nez:|hnle(27*-1;2-k]}
S () h ()] S ()
k=0 k=0

implies that
lim 2% . i <2*k> —0.
k—oo

Hence, taking into account that the function h(\) is decreasing, we obtain (2.2).
It follows from (2.1) that, if Hb € l1, then

(Hb)(A\) =0o(1/X), X — 0+,

and, therefore, by Theorem 1, we obtain that the equation (2.2) holds. The proof of Theorem 2 is
complete. O

Theorem 3. If asequence b € Iy satisfies the conditions
(Z) Z by, = 0;

nezZ
(#3) > |bm|In(e+ |m|) < oo, then Hb € Iy and the following inequality holds:
meZ

IEb];, <6 bl In (e + [m]). (2.3)
mezZ

Proof. It follows from the definition of the discrete Hilbert transform that

bm
(B | = | S 22| < el - (2.4)
m#0
From condition (7) for n # 0, we obtain that
b b b
|(Hb)n|:(z m (:‘Z m —Z—m—
It follows from inequalities (2.4) and (2.5) that

bm
1Bl = > [(Hb), | < 28], +Z[Z ‘ !m!_ T‘nd

nez n#0 m#n

n] |n — m)|

—2ol, + [ X el ]+ Y[ 3 Anlel

n>0 m>n n>0 m<n

NP> |n|r|l7L|imn|z|] 3| X |n||n|27|1|im1lz|]

n<0 m>n n<0 m<n

=2bll, + 1+ J2+ 5+ Ju. (2.6)

Let us estimate the summands Ji, k = 1,2,3,4. From condition (i7) and f equalities of the form

1 1 1 1 1 1 1
> ( -=)=( +1) + ( +o) et ()t
‘\n—m n —1—m —2-m 2 -m-m m

n<
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+< ! - >+( ! Lt )+ S
-m—1-m m+1 -m—-2-m m+2 T 2 T m’
for m > 0, and

> G = () + G ) o (g~ )

2 R

1 1 1 1 1
+< - )+< - >+...:1+—+...+—,
m|+1  |m|+ 1+ |m]| m|+2  |m|+ 2+ |m]| 2 |m|
for m < 0, we obtain that

n=[X Al [ 3 el

n(m—n)

n>0 m>n m>1 0<n<m
=Xl [ 2 (ol m2 el [ gt s € el
p= Y[ 3 el s [y el g S [ n?;lbfu -
n<0 m>n m>0 n<0 m<0 n<m
- Z|bm| [Z(n—lm_%ﬂ +Z|bm| [Z <m1—n+%)] -
m>0 n<0

:Z|bm|-[1+%+...+ ] > (bl - [1+ +.. +—] > bl - In (14 |ml),

m>0 m<0 meZ
_ ] [bm| m [bm| mlbm| 7 _
J3_Z[Z]an ] Z[Zn(m—n)]+z{zn(n—m)}_
n>0 m<n m<0 n>0 m>0 n>m
1 1
bl (S G S [ ()
m<0 n>0 m>0 >m
1 1
= > loml - [1 45+ o ] Z|bm| [1+ ot =] <3 bl I (14 m).
m<0 meZz
J_Z[Z ’mem’} Z[ Z \bm’ }
' ol
n<0 m<n m<—1 m<n<0
1 1
B Z‘bm’[ Z <n—m_ﬁ)]:
m<—1 m<n<0
—2Z|b|-[1+1+ P ]<2Z|b|-ln|m|
= m st T o1l S m .
m<—1 m<—1
From this and (2.6), we obtain (2.3). The proof of Theorem 3 is complete. O

Theorem 4. The following equation holds under the conditions of Theorem 3:

(Hb), = 0. (2.7)
> (H),

nez
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P r o o f. By the conditions of Theorem 3,
)y =~ 3
0 m
m#0

and

b b b b _ mbm
(Hb)nzzn_m_zn_m_zn n_ n(n_m)

for n # 0. Therefore, we have

PCONEED SRS Sl P

nez m#£0 n#0 m#n ( m#0 n#0 m#n
b
7%;0 1§) ngn m) 1; ngnn(n—m)
+Z[Z }+Z[Z }z—?Zb—m+j1+j2+jg+j4.
n<0 m>n n<0 m<n ) m#0 m

It follows from condition (ii) that

a :Z[Z n(;nb—mm)] B Z { Z n(;nb—mm)] -

n>0 m>n m>1 0<n<m

P L Y e R S e

m>1 0<n<m m>1

n<0 m>n

=X [ (=
=3 by [1+ +ot } Zb [1+ +.. +ﬁ]

m>0

m>0 n<0 m<0 n<m

n>0 m<n m<0 n>0 m>0 n>m

> [Z (2

m<0

m<0

j4:z{zn$imm)} - [T sl

n<0 m<n m<—1 m<n<0

:me.[zo(n_l ——)]—225 [1+ ot ]

m<—1 m<n<

From this and (2.8), we obtain (2.7). The proof of Theorem 4 is complete.

Zimmy—}:—zz—i[z

R P )]

IR ST CEE]
— =S b [1+ ety } Zb [1+ +.. +1]

(2.8)
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