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NEW METHOD OF REFLECTOR SURFACE SHAPING
TO PRODUCE A PRESCRIBED CONTOUR BEAM1

Boris V. Semenov1,2,†, Nikolai I. Chernykh1,2,††, Viktor M. Pleshchev1,†††

1Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia;

2Ural Federal University, Ekaterinburg, Russia,

†b.v.semenov@urfu.ru, ††chernykh@imm.uran.ru, †††Viktor.Pleshchev@imm.uran.ru

Abstract: In this paper a simple iterative synthesis method is presented for the formation of the shape of
the reflector surface with a single feed element to produce the desired contour beam. This is the method of
the optimal phase synthesis of the appropriate field in the reflector aperture similar to other works. But unlike
them, we solve the problem in a very simple way using the properties of complex-valued functions and Fourier
transforms and not applying complicated methods of numerical minimization theory.
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Introduction

We consider the problem of synthesis of antenna reflector surface with a single feed. Such
surfaces are constructed to generate a desirable far-field pattern available for the reflector aperture.

There are antennas with a single feed that form contour beams by means of appropriate profiled
reflector surfaces for serving separated districts from spacecraft. They have a very simple construc-
tion, are reliable in exploitation, and optimally solve problems of electromagnetic compatibility.

Several synthesizing methods are known for the problem. They proved themselves to be efficient
but are related to the minimization problems of multi-parameter goal functions. Some of these
methods are direct methods for optimal modification of the basis reflector surface represented by
polynomials, splines, and wavelets [1–4]. Other methods are related to preliminary synthesizing
the electromagnetic fields in the reflector aperture which generate the assembly of narrow partial
beams with subsequent optimization of the disposition of their maximums and selection of their
superposition parameters. After that, the computation of the reflector surface form is carried out
to generate the synthesized optimal aperture field [5–10]. The developed methods are very efficient
for the synthesis of the reflector surface with the diameter of several tenth of the wavelength.

In this paper, another method is presented for contour beam synthesizing by antenna with a
single feed element and a special reflector shape. It is also related to solving optimization problems
but without the application of multi-parameter nonlinear optimization theory. The method is
entirely based on the specific setting of the reflector surface synthesizing problem and on the
properties of complex-valued functions and Fourier transforms. It is possible to adapt the method
to the problem of phase control of large radiating arrays in real time.

The computation of the electric field in opening of the initial reflector (for example, parabolic
revolution with focus at the phase center of the feeding element) is carried out in the knots of the
uniform lattice at very close aperture. It is implemented by means of a vector radiation model of
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the array, which has a sufficiently dense set of points on the initial reflector surface. Dimensions of
the lattice cells must guarantee the exact calculation of the Kirchhoff integral for the far zone field.

Our method, like many others, is iterative. The phase synthesis of a given pattern for the
minimization of the amplitude distribution deviation from the desired far-field pattern is performed
in L2(R2) space. We apply (here, perhaps, for the first time) the iterative methods alternately
using direct and inverse Fourier transforms. It does not require any classic ways of numerical
differentiation and solutions of large systems of linear equations. The mentioned iteration procedure
is implemented until a completely suitable phase distribution at the reflector aperture is found.
Moreover, the procedure may be accompanied by a proper shaping of the reflector surface at every
step of the iteration. To represent intermediate variants of the constructed surface, we make it
“scaly”. Every “scale” is a fragment of a parabolic surface having the same focus as the initial one.
Of course, we do not consider the diffraction at the edges of these (virtual) “scales”, because, at
the final stage of optimization, the weakly discontinuous surface will be changed by a continuous
and smooth one.

1. Physical and phenomenological basis of the method

Bellow, the size and contour of the aperture, the pattern of the feed element, and model D(θ, ϕ)
of the required far-field radiation pattern are supposed to be given. The latter can be a model of
different beams, including contour ones, whose parameters conform to the reflector opening.

Getting to the problem, we assume that the initial reflector surface is cut off from a paraboloid
of revolution by a plane orthogonal to its axis. The corresponding part of the plane is assumed to
be its aperture A containing the origin O and the axes OX and OY of the Cartesian coordinate
system, whose axis OZ coincides with the axis of the parabolic surface and contains its focus F
coincident with the phase center of the feed element.

At first, it is necessary to the calculate electric field at the aperture A (more exactly, its
component Ė(x, y) on the chosen polarization). It should be done very precisely, because it is
possible (although not necessary) do not change the amplitude distribution E(x, y) = |Ė(x, y)| in
the aperture A in future (neglecting the weak influence of local shifts of primary reflector surface
cells). The phase S0(x, y) = arg Ė(x, y)/(2π) will be the initial functional “parameter” which we
are going to change in the course of the reflector surface synthesis. The electrodynamic problem of
searching the field Ė(x, y) is not considered in this article, since it can be solved by other known
methods. We found that the computation according to the vector model formulas (see, for example,
[13]) is very efficient.

2. Model of the algorithm

First we expound a continuous version of the algorithm for the synthesis of the reflector surface,
which will be necessary to carry out numerically. Knowing Ė(x, y) in the reflector aperture A, we
have a representation of the electric field expected in the far zone as the Kirchhoff integral

Ê(u, v) =

∫∫

A

Ė(x, y)e−2πi(ux+vy) dxdy, (2.1)

where u = k sin θ cosϕ, v = k sin θ sinϕ, (θ, ϕ) are the angles of the spherical coordinate system,
k = 1/λ, and u, v are dimensionless variables, because x, y are measured in wavelengths. The
function S0(x, y) is determined from the condition Ė(x, y) = E(x, y) exp(2πiS0(x, y)). Although it
involves the phase component of the feed, it can be interpreted as the length of the optical path
from a point (x, y) ∈ A through the corresponding point on the reflector surface and then up to
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the phase centre of the feed (also measured in wavelength). Disregarding diffraction at the edge
of the reflector, we suppose that the antenna radiation extends only to the half-space z > 0 and
E(x, y) ≡ 0 under the condition (x, y) ∈ R2\A. Thus, from the previous reasoning and (2.1), we
have

Ê(u, v) = Ê(u, v, S) =

∫∫

R2

E(x, y)e2πiS(x,y)e−2πi(ux+vy) dxdy, S = S0, (2.2)

that is the Fourier transform of the predetermined function Ė(x, y). If needed, we smoothly extend
the given contour model D(u, v) of the radiation pattern a little outside the domain of interest and,
denoting the new domain by Ω, we set D(u, v) ≡ 0 for (u, v) ∈ R

2\Ω. We can define the mean
square deviation by the formula

∆(D, Ê) =:
∥∥D(u, v) − |Ê(u, v;S)|

∥∥ =

(∫∫

R2

(D(u, v) − |Ê(u, v;S)|)2 dudv
)1/2

, (2.3)

and formulate the following problem of antenna phase synthesis: to find a function S(x, y) =
S(x, y;D) for which the value

δ =: inf
S

∆(D(u, v), Ê(u, v;S)) (2.4)

is attained. Here, S belongs to the class of all measurable real-valued functions. It should be noted
that only a part of R2 (the ball u2+ v2 ≤ 1) really lies in the physical space. But, in problem (2.4),
we also minimize the energy flow

∫∫

u2+v2>1

∣∣∣Ê(u, v;S)
∣∣∣
2
dudv =

∫∫

u2+v2>1

∣∣∣D(u, v)− Ê(u, v;S)
∣∣∣
2
dudv

in the antenna reactive zone. Further, we apply the usual iterative procedures for phase synthe-
sis worked out for hybrid reflector antennas (HRA) (see, for example, [11, 12]), but here they
are especially clear because do not use a finite-dimensional approximation of the antenna radia-
tion Ê(u, v;S).

Obviously, we have

δ2 = inf
S

inf
ψ

∫∫

R2

∣∣∣D(u, v)eiψ(u,v) − F−(E(x, y)e2πiS(x,y))(u, v)
∣∣∣
2
dudv =

= inf
ψ

inf
S

∫∫

R2

∣∣∣F+(D(u, v)eiψ(u,v))(x, y) − E(x, y)e2πiS(x,y)
∣∣∣
2
dxdy,

(2.5)

where ψ(u, v) is a real-valued measurable function like S(x, y) and functions (F±g)(s, t) are inverse
(with +) and direct (with −) Fourier transforms defined for a function g ∈ L(R2) by

(F±g)(s, t) =

∫∫

R2

g(ξ, ζ)e±2πi(sξ+tζ) dξdζ,

and then extended to L2(R2) in a reasonable well-known way. To represent δ defined by (2.4) as
like (2.5), we have used the following considerations:

1) from the properties of complex-valued functions, it follows that the first integrand in (2.5) is
minimal for ψ equal to ψs defined

ψS(u, v) =: arg Ê(u, v;S) = arg(F−(Ee2πiS))(u, v) = argF−(Ė)), (2.6)
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so the inner infimum over ψ coincides with ∆2(D, Ė) (see (2.3)) in view of formulas (2.2)–(2.4) and
the definition of F−g;

2) it is easy to see that, for any positive functional G(S,ψ) on the spaces of real-valued measurable
functions S(x, y) and ψ(u, v), the following formula inf

S
inf
ψ
G(S,ψ) = inf

ψ
inf
S
G(S,ψ) holds;

3) the equality of integrals in (2.5) follows from the Parseval equality.

Reasoning as in 1), we see that the inner infimum in the last part of (2.5) is attained for 2πS
equal to

2πS(x, y) = 2πSψ(u, v) =: arg(F+(Deiψ))(x, y). (2.7)

From these considerations, it follows that the solution S(x, y) ((x, y) ∈ A) of problem (2.4) together
with the solution ψ of the problem

inf
ψ

∫∫

R2

(
E(x, y) −

∣∣∣F+(Deiψ)(x, y)
∣∣∣
)2

dxdy

must be connected by the nonlinear equations (2.6) and (2.7). Except for special cases, this system
can be solved only approximately by a numerical method.

To construct such a method, we use the obvious fact that, for every above mentioned functions
S(x, y) and ψ(u, v), we have the following inequalities for the norms in the space L2(R2) hold:

∥∥∥Deiψs − F−(Ee2πiS)
∥∥∥ ≤

∥∥∥Deiψ − F−(Ee2πiS)
∥∥∥

=
∥∥∥F+(Deiψ)− Ee2πiS

∥∥∥ ,
(2.8)

∥∥∥F+(Deiψ)− Ee2πiSψ
∥∥∥ ≤

∥∥∥F+(Deiψ)− Ee2πiS
∥∥∥
L2(R)

, (2.9)

where ψS and Sψ are defined in (2.6) and (2.7). Further, beginning with the function S0(x, y) and
alternately using formulas (2.6) and (2.7), we construct the following chain of functions:

ψS0
(u, v), SψS0 (x, y) =: S1(x, y), ψS1

(u, v),

S2(x, y) =: SψS1 (x, y), . . . , ψSn−1
(u, v), Sn =: SψSn−1

, . . . .

Denoting 



Sn(x, y)− Sn−1(x, y) =: ∆n−1(x, y) (n ∈ N, (x, y) ∈ A),

δn =
∥∥DeiψSn − F−(Ee2πiSn)

∥∥ =
∥∥F+(DeiψSn )− Ee2πiSn)

∥∥ ,

δn =
∥∥F+(DeiψSn )− Ee2πiSn+1

∥∥ =
∥∥DeiψSn − F−(Ee2πiSn+1)

∥∥

(2.10)

and assuming that S = Sn(x, y) and ψ = ψSn−1
(u, v) in (2.8) and S = Sn(x, y) and ψ = ψSn(u, v)

in (2.9), we deduce the inequalities

· · · ≥ δn−1 ≥ δn ≥ δn ≥ · · · (n = 1, 2, . . .).

Since the formulas ψSn = argF−(Ee2πiSn) and F−(Ee2πiSn) = Ê(u, v;Sn) hold, we have that

δn =
∥∥∥D − |Ê(u, v;Sn)|

∥∥∥ is the distance between the desired radiation pattern and the realizable

pattern |Ê(u, v;Sn)|. This distance decreases to some value δ∞(S0) as n → ∞, which cannot
be zero, because the finitely supported function D(u, v) is not an entire function. For different
S0(x, y), the sequences {Sn(x, y)} may differ too, since problem (2.4) is a set-valued extremal one
(for example, |Ê(u, v;S)| ≡ |Ê(u, v;S+const)|). Nevertheless, for large n, the function |Ê(u, v;Sn)|
inherits the main features of D(u, v). We verified this fact in many computing experiments.
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3. Computation procedures

It is natural to begin the construction of the sequence {Sn(x, y)} with calculating S0(x, y) =
arg Ė(x, y) = Ė(x, y)/|Ė(x, y)| over the nodes of a chosen lattice and stop it when the replacement
of ψSn−1

by ψSn negligibly changes the value max
A

|∆n−1(x, y)| or the value

max
Ω

|Ê(u, v;Sn−1)− Ê(u, v;Sn)|.

In practice, the range of values (ux+ vy) is not large, so oscillations of the function exp(−2πi(ux+
vy)) are also not large. Therefore, an approximate computation of the integral in the Fourier
transforms over any dense lattice does not cause any difficulties and the construction of the sequence
{Sn} almost does not need any additional calculations.

4. Synthesis of the reflector surface

The initial parabolic reflector surface z =
x2 + y2

4f
−z0 (z0 > 0, x2+y2 < 4fz0) can be corrected

after each step of replacement of Sn−1(x, y) by Sn(x, y). It is possible to do this more rarely or at
the end, i.e., immediately after the computation of SN based on the difference Sn(x, y)− S0(x, y).
Below, we use the first strategy.

Let cells of the chosen lattice over the aperture A be the squares with size h×h and midpoints
Mij with coordinates xi = ih, yj = jh (i, j = 0,±1, . . . ,±k, where (k + 1/2)h =: r, and r is the
radius of A) and with the conditions (xi, yj) ∈ A. Here, we have r =

√
4fz0, F (0, 0, f,−z0) is the

focus of the paraboloid, the cells mij of the lattice are framed by the lines (x = xi ± h/2, z = 0)
and (y = yj ± h/2, z = 0). Replacing the condition z = 0 by z < 0, we obtain, instead of the cells,
the set of tubes tij in the half-space z < 0 of the space R3 whose orthogonal cross-sections are the
squares (

−h
2
+ xi < x < xi +

h

2
, −h

2
+ yj < y < yj +

h

2
, z = const < 0

)
.

Every tube tij cuts off an initial scale σ0ij from the initial paraboloid which is part of the paraboloid

z =
x2 + y2

4f
−z0, (x, y) ∈ mij, intersecting the axis at tij at the pointM

0
ij

(
xi, yj,

x2i + y2j
4f

− z0

)
.

Further, we use analogous “scales” which are cuttings of any other paraboloid Pij with the same
axis of symmetry OZ and focus F . The cuttings are embedded in the tubes tij and contain any
given point M(xi, yj , zij) on their axes. It is easy to verify that the equation of the paraboloid Pij
for the given zij is

z =
x2 + y2

4fij
− z̃ij , (x, y) ∈ mij , (4.11)

where the focal distance fij and the zth vertex coordinate z̃ij are defined by the relations
{
4fij(zij + z̃ij) = x2i + y2j , fij − z̃ij = f − z0, fij > 0, zij > 0

}
. (4.12)

Since the function exp(−2πiS(x, y)) of S is λ-periodic, it is quite possible to locally change the
function S(x, y) in the Kirchhoff integral (2.2) by (S(x, y) − n) with an arbitrary integer n up to
[S(x, y)]. Hence, taking into account the first notation in (2.10) and determining S1(x, y), we can
compensate the difference ∆1(x, y) by small shifts and simultaneously change all initial scales σ0ij
by σ1ij whose coordinates z0ij are determined from the conditions

|FM0
ij |+ |M0

ijMij | = S0(Mij) + ∆0(Mij)−∆0(0, 0) + (n0ij)λ. (4.13)
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Here, we assume that n000 = 0, so, the location of σ000 is not changed. The other numbers n0ij
determining the pointsM0

ij must be chosen layerwise aroundM00(0, 0,−z0) to minimize the distance

|z0ij − z0i1j1 | between the neighbouring points Mij and Mi1j1 .

The further steps of the iteration procedures are implemented according to the same principles:
using (2.6) and (2.7), we find the recurrent phase distribution S0(Mij) (Mij ∈ A) and compensate
the differences ∆n−1(Mij) by numerical construction of the corresponding new scaled surface of the
reflector as explained above in the case n = 1. Just in this construction, we must replace the set of
points M0

ij by M
n
ij and perform all calculations for n = 1, 2, . . . according formulas (4.11)–(4.13).

In this section, we described how to choose a number N to stop the iterations. In the final stage,
it will be necessary to smooth the constructed weakly discontinuous surface z = fN (x, y) built of
little scales nNij . A fairly good result could be obtained as a close solution of the approximation
problem

‖fN (x, y)− S2(x, y)‖+ α
∥∥S′

2(x, y)
∥∥→ inf

S

for the function fN (x, y) by using quadratic or cubic splines S(x, y). This problem was completely
investigated in [14]. Perhaps it would be useful to recompute the amplitude distribution on the
aperture A after each next version of the modified reflector surface and to change the function
E(x, y) in the corresponding Fourier transforms (2.2).

Fig. 1 shows an example of a far-field pattern of the cosecant type for the antenna with a
single feed element and the reflector surface shaped by the described method. The results of the
synthesized contour beam for Europe and the corresponding reflector surface form are presented in
Fig. 2. Other examples can be found in [15].

5. Conclusion

In this work, we describe a new iterative method for numerical shaping of the locally curved
shape of the reflector surface for the antenna with a single feed element. The antenna must generate
a beam with a prescribed contour of its cross-section. The method has some common features with
other known methods, in particular, stated in the papers from the list of references. Our method
mainly differs by the technique of minimization in the problem of aperture phase synthesis, which
makes it possible to shape reflectors of large diameter. The method was tested in many computing
experiments and showed itself as efficient.
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Figure 1. Example of the synthesized far-field pattern of double cosecant type
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λ

Figure 2. Example of the synthesized contour beam for Europe and the corresponding reflector surface form
(contour plot of a deflection of a of the synthesized reflector surface from an initial paraboloid are shown
with a step 0,01 wavelength λ)



New method of reflector surface shaping to produce a prescribed contour beam 151

4. Vipiana F., Pirinoli P., Vecchi G. Wavelet-mom analysis of 3d antennas with triangular mesh
// Antennas and Propagation Society International Symposium, IEEE, 2004. P. 1471–1474. DOI:
10.1109/APS.2004.1330466

5. Woodward P.M., Lawson J.D. The theoretical precision with an arbitrary radiation-pattern may
be obtained from a source of finite size // J. Institution of Electrical Engineers - Part III: Radio and
Communication Engineering, IET, 1948. Vol. 95, no. 37. P. 363–370. DOI: 10.1049/ji-3-2.1948.0094

6. Jorgensen R. Coverage shaping of contoured-beam antennas by aperture field synthesis // IEE Pro-
ceedings H - Microwaves, Optics and Antennas, IET, 1980. Vol. 127, no. 4. P. 201–208. DOI: 10.1049/ip-
h-1:19800045

7. Alan R.C., Roberto J.A. A method for producing a shaped contour radiation pattern using a single
shaped reflector and a single feed // IEEE Transactions on Antennas and Propagation, 1989. Vol. 37,
no. 6. P. 698–706. DOI: 10.1109/8.29356

8. Sazonov D.M., Frolov N.J. A universal method for synthesis of shaped contour beam reflector
antennas with a single-element or multiple-element feeds // Proc. of the 28 Moscow Int. Conf. of Antenna
theory and Technology. 1998. P. 399–402.

9. Shishlov A.V. Mirror antennas with contour directional diagrams - efficiency and limiting capabilities
// Radio Engineering, 2006. Vol. 4. P. 45–50 [in Russian].

10. Bucci, DElia G., Romito G. Synthesis technique for scanning and/or reconfigurable beam reflector
antennas with phase-only control // IEE. Proc.-Microw., Antennas Propag., IET, 1996. Vol. 143, no. 5
P. 402–412. DOI: 10.1049/ip-map:19960262

11. Choni Yu.I. Synthesis of antennas based on a given amplitude directional pattern // Radio engineering
and electronics. 1971. Vol. 15, no. 5. P. 726–734 [in Russian].

12. Arestov V.V., Balaganskii V.S., Gusevskii V.I., Semenov B.V., Sobolev B.S., Chernyh

N.I., Sharin N.P. The problem of phase synthesis DN GZA // Collection of scientific works ”Radio
century: Perspective ways of development of antenna systems of space communication, theory of control
and pattern recognition”. Ekaterinburg: UrB RAS, 1996. P. 29–55 [in Russian].

13. Sobolev B.S. Vector mathematical model of reflector antennas. // Sbornik “Raketno-kosmicheskya
tehnika”. Ekaterinburg: NPO avtomatiki, 2014. P. 140–151 [in Russian].

14. Sazanov A.A. Approximative properties of generalized interpolating splines in a metric linear space //
Proceeding of the Steklov Institute of Mathematics, 2002. Suppl. 2. P. 155–161.

15. Semenov B.V. Effective iterative methods for contoured beams reflector antenna synthesis // European
Microwave Week 2009, Conf. Proc. (EuMA 2009). P. 1500–1503. DOI: 10.23919/EUMC.2009.5296389


